Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (5x)/((x-2)^2)
\int\:\frac{5x}{(x-2)^{2}}dx
d/(dθ)(tan(θ/2))
\frac{d}{dθ}(\tan(\frac{θ}{2}))
integral of (x^2-2x+5)
\int\:(x^{2}-2x+5)dx
integral from-8 to 8 of (e^x-e^{-x})^2
\int\:_{-8}^{8}(e^{x}-e^{-x})^{2}dx
integral from 0 to 2 of x+1
\int\:_{0}^{2}x+1dx
integral from 0 to 4 of x-2sqrt(x)
\int\:_{0}^{4}x-2\sqrt{x}dx
integral of-xsqrt(x-1)
\int\:-x\sqrt{x-1}dx
(\partial)/(\partial x)(xln(x^2+y^2))
\frac{\partial\:}{\partial\:x}(x\ln(x^{2}+y^{2}))
(\partial)/(\partial x)(4x(5+y)^{-1})
\frac{\partial\:}{\partial\:x}(4x(5+y)^{-1})
tangent of f(x)=x^3+2x,\at x=0
tangent\:f(x)=x^{3}+2x,\at\:x=0
(\partial)/(\partial x)((-cos(x))/(sqrt(x)))
\frac{\partial\:}{\partial\:x}(\frac{-\cos(x)}{\sqrt{x}})
taylor 3^x
taylor\:3^{x}
limit as x approaches 1 of-4x+6
\lim\:_{x\to\:1}(-4x+6)
(dy)/(dx)=e^{2x+3y}
\frac{dy}{dx}=e^{2x+3y}
derivative of 1/6 \sqrt[5]{(6-5x^2^7})
\frac{d}{dx}(\frac{1}{6}\sqrt[5]{(6-5x^{2})^{7}})
integral of x/(\sqrt[3]{x-1)}
\int\:\frac{x}{\sqrt[3]{x-1}}dx
integral of xe^{-1/10 x^2}
\int\:xe^{-\frac{1}{10}x^{2}}dx
(d^3)/(dx^3)((1+sqrt(x))^3)
\frac{d^{3}}{dx^{3}}((1+\sqrt{x})^{3})
(\partial)/(\partial x)(2xy^3+2)
\frac{\partial\:}{\partial\:x}(2xy^{3}+2)
y^'-(3/t)*y=2t^3*e^{(2t)},y(1)=0
y^{\prime\:}-(\frac{3}{t})\cdot\:y=2t^{3}\cdot\:e^{(2t)},y(1)=0
sum from n=1 to infinity of 1/(2^n-5)
\sum\:_{n=1}^{\infty\:}\frac{1}{2^{n}-5}
derivative of f(x)=(x+2)*sqrt(-x)
derivative\:f(x)=(x+2)\cdot\:\sqrt{-x}
(dy}{dx}=\frac{2y)/x-x^2y^2
\frac{dy}{dx}=\frac{2y}{x}-x^{2}y^{2}
y^{''}+3y^'+2y= 1/(3+e^x)
y^{\prime\:\prime\:}+3y^{\prime\:}+2y=\frac{1}{3+e^{x}}
derivative of sqrt(r)+\sqrt[9]{r}
derivative\:\sqrt{r}+\sqrt[9]{r}
limit as x approaches 1 of sqrt(2x^2-x)
\lim\:_{x\to\:1}(\sqrt{2x^{2}-x})
(dy)/(dx)=x^4(y-2)
\frac{dy}{dx}=x^{4}(y-2)
limit as x approaches 1 of cos(xpi)
\lim\:_{x\to\:1}(\cos(xπ))
derivative of 1/(x^{13)}
derivative\:\frac{1}{x^{13}}
xy^'-2y=-2x^2+x-2
xy^{\prime\:}-2y=-2x^{2}+x-2
tangent of f(x)=6x^2-x^3,\at x=1
tangent\:f(x)=6x^{2}-x^{3},\at\:x=1
factor-sin(x)-4
factor\:-\sin(x)-4
integral of (t)(e^{2t})
\int\:(t)(e^{2t})dt
f(x)=cosh(3*ln(x/2))
f(x)=\cosh(3\cdot\:\ln(\frac{x}{2}))
integral of e^{2x}cos^2(x)
\int\:e^{2x}\cos^{2}(x)dx
f(t)=-sin(t)
f(t)=-\sin(t)
integral of (x^4)/(sqrt((1-x^2)^3))
\int\:\frac{x^{4}}{\sqrt{(1-x^{2})^{3}}}dx
derivative of (x+2)^{2^'}
derivative\:(x+2)^{2^{\prime\:}}
integral of 9e^{2x}
\int\:9e^{2x}dx
integral from 1 to 11x^{15 of} 1/t
\int\:_{1}^{11x^{15}}\frac{1}{t}dt
derivative of (2x^5/(5+3x^4+6x^3+2x+4))
\frac{d}{dx}(\frac{2x^{5}}{5+3x^{4}+6x^{3}+2x+4})
limit as z approaches 0 of (2z-8) 1/3
\lim\:_{z\to\:0}((2z-8)\frac{1}{3})
derivative of (2x/(3-tan(x)))
\frac{d}{dx}(\frac{2x}{3-\tan(x)})
derivative of-3x
derivative\:-3x
(\partial)/(\partial y)(xyln(x^2+y^2))
\frac{\partial\:}{\partial\:y}(xy\ln(x^{2}+y^{2}))
integral of 2/(sqrt(4-x^2))
\int\:\frac{2}{\sqrt{4-x^{2}}}dx
integral of ((x+2))/((x+1))
\int\:\frac{(x+2)}{(x+1)}dx
y^'(t)=(y+1)*(y-3),y(0)=1
y^{\prime\:}(t)=(y+1)\cdot\:(y-3),y(0)=1
integral of 1/2 (x+1/2 sin(2x))
\int\:\frac{1}{2}(x+\frac{1}{2}\sin(2x))dx
limit as x approaches 1 of x^2-2x
\lim\:_{x\to\:1}(x^{2}-2x)
(\partial)/(\partial y)(x^2-5xy+3y^2)
\frac{\partial\:}{\partial\:y}(x^{2}-5xy+3y^{2})
integral of 4x^2-16x+16
\int\:4x^{2}-16x+16dx
limit as x approaches 1 of (x^4-1)/(x-1)
\lim\:_{x\to\:1}(\frac{x^{4}-1}{x-1})
tangent of f(-2)=2x^4
tangent\:f(-2)=2x^{4}
derivative of (4x+1^2)
\frac{d}{dx}((4x+1)^{2})
derivative of 1/((1-2x))
\frac{d}{dx}(\frac{1}{(1-2x)})
derivative of e^{4t}
derivative\:e^{4t}
derivative of x^2*e^{-3x}
\frac{d}{dx}(x^{2}\cdot\:e^{-3x})
(e^tx+1)dt+(e^t-1)dx=0,x(1)=1
(e^{t}x+1)dt+(e^{t}-1)dx=0,x(1)=1
limit as x approaches 1 of log_{1/e}(x)
\lim\:_{x\to\:1}(\log_{\frac{1}{e}}(x))
laplacetransform t*e^{5t}sin(3t)
laplacetransform\:t\cdot\:e^{5t}\sin(3t)
(\partial)/(\partial y)(1-xy)
\frac{\partial\:}{\partial\:y}(1-xy)
inverse oflaplace 1/(s(s^2+4))+1
inverselaplace\:\frac{1}{s(s^{2}+4)}+1
limit as x approaches 0 of (4/(x-1)+4)/x
\lim\:_{x\to\:0}(\frac{\frac{4}{x-1}+4}{x})
derivative of sqrt(x/(x+2))
\frac{d}{dx}(\sqrt{\frac{x}{x+2}})
derivative of e^{4xsin(2x)}
derivative\:e^{4x\sin(2x)}
derivative of f(x)=x^3+5x
derivative\:f(x)=x^{3}+5x
(\partial)/(\partial x)(4e^{4xy})
\frac{\partial\:}{\partial\:x}(4e^{4xy})
laplacetransform te^t
laplacetransform\:te^{t}
derivative of e^{x^4}+7x
\frac{d}{dx}(e^{x^{4}}+7x)
normal of f(x)=sqrt(x^2+16),\at x=3
normal\:f(x)=\sqrt{x^{2}+16},\at\:x=3
integral of (e^{8x})/(e^{8x)+6}
\int\:\frac{e^{8x}}{e^{8x}+6}dx
limit as y approaches 1 of (2sqrt(y^2+3))/(y-1)
\lim\:_{y\to\:1}(\frac{2\sqrt{y^{2}+3}}{y-1})
d/(dt)(2e^{-t}t-e^{-t}t^2)
\frac{d}{dt}(2e^{-t}t-e^{-t}t^{2})
derivative of (9x^6+4x^3^4)
\frac{d}{dx}((9x^{6}+4x^{3})^{4})
limit as t approaches pi of sin(3/4 t)
\lim\:_{t\to\:π}(\sin(\frac{3}{4}t))
slope of (-4,7),(2,-8)
slope\:(-4,7),(2,-8)
limit as x approaches 1+of (1-x)*tan((pix)/2)
\lim\:_{x\to\:1+}((1-x)\cdot\:\tan(\frac{πx}{2}))
(\partial)/(\partial y)((x^2y^2)/(x+y))
\frac{\partial\:}{\partial\:y}(\frac{x^{2}y^{2}}{x+y})
area y^2=x,x-y=2
area\:y^{2}=x,x-y=2
derivative of 2e^x+2/(\sqrt[3]{x})
\frac{d}{dx}(2e^{x}+\frac{2}{\sqrt[3]{x}})
integral of (4x)/((x^2+3)^2)
\int\:\frac{4x}{(x^{2}+3)^{2}}dx
tangent of f(x)= 4/x ,\at x=2
tangent\:f(x)=\frac{4}{x},\at\:x=2
integral of (2-x)/(x^2+x)
\int\:\frac{2-x}{x^{2}+x}dx
integral from 4 to 16 of 1/(8-sqrt(x))
\int\:_{4}^{16}\frac{1}{8-\sqrt{x}}dx
tangent of f(x)=8x^2-x^3,(2,24)
tangent\:f(x)=8x^{2}-x^{3},(2,24)
slope of (3,4),(5,8)
slope\:(3,4),(5,8)
y^'=(2y)/(3x)
y^{\prime\:}=\frac{2y}{3x}
derivative of 1/(2+x)
derivative\:\frac{1}{2+x}
limit as t approaches 0 of (tan(5t))k
\lim\:_{t\to\:0}((\tan(5t))k)
taylor z/(z^{4+9)}
taylor\:\frac{z}{z^{4+9}}
integral of (5x^4)/4+(3x^2)/2+7x+C
\int\:\frac{5x^{4}}{4}+\frac{3x^{2}}{2}+7x+Cdx
inverse oflaplace (s+1)/((s+1)^2+1)
inverselaplace\:\frac{s+1}{(s+1)^{2}+1}
integral of (11x)^2
\int\:(11x)^{2}dx
integral of 1/((x+4)^{7/2)}
\int\:\frac{1}{(x+4)^{\frac{7}{2}}}dx
y^'+2xy=1
y^{\prime\:}+2xy=1
(\partial)/(\partial x)(e^t)
\frac{\partial\:}{\partial\:x}(e^{t})
limit as x approaches 1 of x^3-2x+2
\lim\:_{x\to\:1}(x^{3}-2x+2)
integral of 2/(4x+7sqrt(x))
\int\:\frac{2}{4x+7\sqrt{x}}dx
(dy)/(dt)=y^2+k
\frac{dy}{dt}=y^{2}+k
1
..
273
274
275
276
277
..
1823