inverse of f(x)=ln(3x)
|
inverse\:f(x)=\ln(3x)
|
critical points of f(x)= 1/x
|
critical\:points\:f(x)=\frac{1}{x}
|
range of (x^2-16)/(2x+8)
|
range\:\frac{x^{2}-16}{2x+8}
|
shift-6cos(8x-(pi)/2)
|
shift\:-6\cos(8x-\frac{\pi}{2})
|
extreme points of f(x)=x^2-4x+3
|
extreme\:points\:f(x)=x^{2}-4x+3
|
critical points of f(x)=sin(4x)
|
critical\:points\:f(x)=\sin(4x)
|
perpendicular y= 3/2 x+0,\at (-4,2)
|
perpendicular\:y=\frac{3}{2}x+0,\at\:(-4,2)
|
domain of f(x)=sqrt(x/(x^2-2x-35))
|
domain\:f(x)=\sqrt{\frac{x}{x^{2}-2x-35}}
|
domain of-(1/2)^x-1
|
domain\:-(\frac{1}{2})^{x}-1
|
intercepts of f(x)=(2x+18)/(2x^2+13x-45)
|
intercepts\:f(x)=\frac{2x+18}{2x^{2}+13x-45}
|
line (5,6),(7,8)
|
line\:(5,6),(7,8)
|
asymptotes of f(x)=(2x^2+1)/(2x^3-4x^2)
|
asymptotes\:f(x)=\frac{2x^{2}+1}{2x^{3}-4x^{2}}
|
slope intercept of 5x-y=3
|
slope\:intercept\:5x-y=3
|
inverse of f(x)=(6-x)^{1/2}
|
inverse\:f(x)=(6-x)^{\frac{1}{2}}
|
asymptotes of f(x)=(sqrt(3x^2+4))/(5x+3)
|
asymptotes\:f(x)=\frac{\sqrt{3x^{2}+4}}{5x+3}
|
range of x\sqrt[3]{x+8}
|
range\:x\sqrt[3]{x+8}
|
inverse of f(x)=5(x-3)^2
|
inverse\:f(x)=5(x-3)^{2}
|
domain of 1/(2x+4)
|
domain\:\frac{1}{2x+4}
|
range of (4x^2+4)/(x^2+6x+9)
|
range\:\frac{4x^{2}+4}{x^{2}+6x+9}
|
parity f(x)= 1/4 x^6-5x^2
|
parity\:f(x)=\frac{1}{4}x^{6}-5x^{2}
|
domain of e^{x+1}-3
|
domain\:e^{x+1}-3
|
perpendicular y= 3/4 x
|
perpendicular\:y=\frac{3}{4}x
|
intercepts of f(x)=x^2+14x+46
|
intercepts\:f(x)=x^{2}+14x+46
|
inverse of (x+16)/(x-4)
|
inverse\:\frac{x+16}{x-4}
|
critical points of f(x)=(x-3)(x-7)^3+12
|
critical\:points\:f(x)=(x-3)(x-7)^{3}+12
|
inverse of f(x)=4x-7
|
inverse\:f(x)=4x-7
|
domain of f(x)= 1/(\frac{x){x+1}}
|
domain\:f(x)=\frac{1}{\frac{x}{x+1}}
|
inverse of f(x)=1
|
inverse\:f(x)=1
|
monotone intervals f(x)=1-5*x*e^{-x}
|
monotone\:intervals\:f(x)=1-5\cdot\:x\cdot\:e^{-x}
|
inverse of y=3^x+5
|
inverse\:y=3^{x}+5
|
inverse of (3x-4)/(x-2)
|
inverse\:\frac{3x-4}{x-2}
|
inverse of f(x)= 1/(2+x)
|
inverse\:f(x)=\frac{1}{2+x}
|
inverse of f(x)=(x-1)/9
|
inverse\:f(x)=\frac{x-1}{9}
|
inverse of f(x)=500(0.04-x2)
|
inverse\:f(x)=500(0.04-x2)
|
inverse of y=sqrt(x+2)
|
inverse\:y=\sqrt{x+2}
|
asymptotes of f(x)=(x^2+5)/x
|
asymptotes\:f(x)=\frac{x^{2}+5}{x}
|
range of f(x)= 1/(x-9)
|
range\:f(x)=\frac{1}{x-9}
|
domain of g(w)=(w^2-3w)/(2w^3+w^2-21w)
|
domain\:g(w)=\frac{w^{2}-3w}{2w^{3}+w^{2}-21w}
|
domain of f(x)= 1/(1/x)
|
domain\:f(x)=\frac{1}{\frac{1}{x}}
|
inverse of f(x)=(x+3)/(2x)
|
inverse\:f(x)=\frac{x+3}{2x}
|
inverse of y=(x-3)^3
|
inverse\:y=(x-3)^{3}
|
intercepts of xsqrt(9-x)
|
intercepts\:x\sqrt{9-x}
|
domain of (sqrt(x))/(5x^2+4x-1)
|
domain\:\frac{\sqrt{x}}{5x^{2}+4x-1}
|
range of x^4-4x^2
|
range\:x^{4}-4x^{2}
|
inflection points of (2x^2+x)/(x^2-3x)
|
inflection\:points\:\frac{2x^{2}+x}{x^{2}-3x}
|
domain of g(t)=-9/(2t^{3/2)}
|
domain\:g(t)=-\frac{9}{2t^{\frac{3}{2}}}
|
domain of f(x)=\sqrt[4]{x^2-3x}
|
domain\:f(x)=\sqrt[4]{x^{2}-3x}
|
domain of f(x)=(x^2+1)/(x^2-1)
|
domain\:f(x)=\frac{x^{2}+1}{x^{2}-1}
|
extreme points of x^4-12x^3
|
extreme\:points\:x^{4}-12x^{3}
|
domain of (6x)/(x-5)
|
domain\:\frac{6x}{x-5}
|
line (-4,6),(6,4)
|
line\:(-4,6),(6,4)
|
asymptotes of 2/(x-1)+1
|
asymptotes\:\frac{2}{x-1}+1
|
intercepts of (x^2+2x-4)/(x^2+x)
|
intercepts\:\frac{x^{2}+2x-4}{x^{2}+x}
|
critical points of (x-8)/(x+6)
|
critical\:points\:\frac{x-8}{x+6}
|
asymptotes of f(x)= 2/(x-4)-3
|
asymptotes\:f(x)=\frac{2}{x-4}-3
|
inflection points of ((ln(x))/x)
|
inflection\:points\:(\frac{\ln(x)}{x})
|
monotone intervals (x^2+2x-1)(2x^2-3x+6)
|
monotone\:intervals\:(x^{2}+2x-1)(2x^{2}-3x+6)
|
slope of y= 2/3 x-2
|
slope\:y=\frac{2}{3}x-2
|
extreme points of f(x)=4-x^2
|
extreme\:points\:f(x)=4-x^{2}
|
domain of f(x)=5x-10
|
domain\:f(x)=5x-10
|
inverse of y=x^2-4x
|
inverse\:y=x^{2}-4x
|
range of f(x)=x< 0
|
range\:f(x)=x\lt\:0
|
asymptotes of f(x)=(x^4-16)/(2x^2-4x)
|
asymptotes\:f(x)=\frac{x^{4}-16}{2x^{2}-4x}
|
line (6,10)m=2
|
line\:(6,10)m=2
|
symmetry y=1-x^2
|
symmetry\:y=1-x^{2}
|
inverse of f(x)=y=4x-5
|
inverse\:f(x)=y=4x-5
|
perpendicular y=-x/2-4,\at (5,7)
|
perpendicular\:y=-\frac{x}{2}-4,\at\:(5,7)
|
extreme points of f(x)=2sqrt(x)-8x,x> 0
|
extreme\:points\:f(x)=2\sqrt{x}-8x,x\gt\:0
|
extreme points of (2x-2)/(3(x^2-2x)^{2/3)}
|
extreme\:points\:\frac{2x-2}{3(x^{2}-2x)^{\frac{2}{3}}}
|
domain of f(x)= 1/(x(x+2))
|
domain\:f(x)=\frac{1}{x(x+2)}
|
asymptotes of y= 1/(x^2-9)
|
asymptotes\:y=\frac{1}{x^{2}-9}
|
inverse of 9/(x-4)
|
inverse\:\frac{9}{x-4}
|
asymptotes of f(x)=(x^2-4x-21)/(3x-21)
|
asymptotes\:f(x)=\frac{x^{2}-4x-21}{3x-21}
|
asymptotes of y=(x^2-16)/(9-x^2)
|
asymptotes\:y=\frac{x^{2}-16}{9-x^{2}}
|
domain of f(x)= 1/(1-e^x)
|
domain\:f(x)=\frac{1}{1-e^{x}}
|
critical points of f(x)=-x^4+4x^3+2
|
critical\:points\:f(x)=-x^{4}+4x^{3}+2
|
domain of y=(x+8)/(x^2+5)
|
domain\:y=\frac{x+8}{x^{2}+5}
|
inverse of f(x)=(20)/(10+e^x)
|
inverse\:f(x)=\frac{20}{10+e^{x}}
|
asymptotes of f(x)=(x+3)/(x-4)
|
asymptotes\:f(x)=\frac{x+3}{x-4}
|
shift f(x)=sin(x-(pi)/2)-4
|
shift\:f(x)=\sin(x-\frac{\pi}{2})-4
|
inverse of f(x)=9-x
|
inverse\:f(x)=9-x
|
parity f(x)=5x+7
|
parity\:f(x)=5x+7
|
inverse of f(x)=(2x)/(x-4)
|
inverse\:f(x)=\frac{2x}{x-4}
|
intercepts of ((x-3)(x+1))/(x+2)
|
intercepts\:\frac{(x-3)(x+1)}{x+2}
|
asymptotes of f(x)=-2log_{2}(x-2)+8
|
asymptotes\:f(x)=-2\log_{2}(x-2)+8
|
distance (0,-5),(6,1)
|
distance\:(0,-5),(6,1)
|
domain of cos(4x)
|
domain\:\cos(4x)
|
domain of f(x)= 1/(x-3)+2
|
domain\:f(x)=\frac{1}{x-3}+2
|
slope intercept of y+5=-4(x+6)
|
slope\:intercept\:y+5=-4(x+6)
|
domain of f(x)=(-3)/(12-x-x^2)
|
domain\:f(x)=\frac{-3}{12-x-x^{2}}
|
inflection points of f(x)=ln(1+x)
|
inflection\:points\:f(x)=\ln(1+x)
|
domain of f(x)=e^{4sqrt(x)}
|
domain\:f(x)=e^{4\sqrt{x}}
|
inverse of f(x)=ln(x-1)
|
inverse\:f(x)=\ln(x-1)
|
parallel y=3x+4
|
parallel\:y=3x+4
|
symmetry-x^2+6x-5
|
symmetry\:-x^{2}+6x-5
|
domain of sqrt(10x+8)
|
domain\:\sqrt{10x+8}
|
intercepts of x^3+3x^2-7x-21
|
intercepts\:x^{3}+3x^{2}-7x-21
|
inverse of f(x)=(19)/x
|
inverse\:f(x)=\frac{19}{x}
|
intercepts of f(x)=(x-6)/(x+3)
|
intercepts\:f(x)=\frac{x-6}{x+3}
|
inverse of f(x)=7(\sqrt[3]{x}-6)
|
inverse\:f(x)=7(\sqrt[3]{x}-6)
|