domain of y=e^{-2x}
|
domain\:y=e^{-2x}
|
asymptotes of f(x)=(2x^2+x-1)/(x+4)
|
asymptotes\:f(x)=\frac{2x^{2}+x-1}{x+4}
|
range of f(x)=5x^2+7
|
range\:f(x)=5x^{2}+7
|
inverse of f(x)=\sqrt[3]{x-4}-2
|
inverse\:f(x)=\sqrt[3]{x-4}-2
|
f(x)=x^2-2x
|
f(x)=x^{2}-2x
|
monotone intervals f(x)= 1/(x^2-6x+12)
|
monotone\:intervals\:f(x)=\frac{1}{x^{2}-6x+12}
|
domain of f(x)=x^2+5x
|
domain\:f(x)=x^{2}+5x
|
inflection points of (x-2)^{(4)}
|
inflection\:points\:(x-2)^{(4)}
|
domain of f(x)=4x^3+5x^2
|
domain\:f(x)=4x^{3}+5x^{2}
|
slope of-3/5 \land (9,-2)
|
slope\:-\frac{3}{5}\land\:(9,-2)
|
inflection points of f(x)=e^x-x^2-2x+6
|
inflection\:points\:f(x)=e^{x}-x^{2}-2x+6
|
asymptotes of f(x)=-3*5^{-x+3}
|
asymptotes\:f(x)=-3\cdot\:5^{-x+3}
|
intercepts of f(x)=x^3+x
|
intercepts\:f(x)=x^{3}+x
|
range of-x^2-2x-1
|
range\:-x^{2}-2x-1
|
domain of f(x)=0.5(2)^x
|
domain\:f(x)=0.5(2)^{x}
|
domain of sqrt(x^2-3)
|
domain\:\sqrt{x^{2}-3}
|
domain of 9-4x^2
|
domain\:9-4x^{2}
|
distance (-3,2)(2,-2)
|
distance\:(-3,2)(2,-2)
|
intercepts of f(x)=-1/2 (x-1/3)^2-3/2
|
intercepts\:f(x)=-\frac{1}{2}(x-\frac{1}{3})^{2}-\frac{3}{2}
|
domain of (x-2)^3
|
domain\:(x-2)^{3}
|
shift f(x)=5sin(2x)
|
shift\:f(x)=5\sin(2x)
|
domain of (2x^2+3x-2)/(x^2+x-2)
|
domain\:\frac{2x^{2}+3x-2}{x^{2}+x-2}
|
domain of (x-1)/((x+3)(x-2))
|
domain\:\frac{x-1}{(x+3)(x-2)}
|
domain of x-4
|
domain\:x-4
|
domain of g(x)=-2
|
domain\:g(x)=-2
|
range of f(x)=xsqrt(x-15)
|
range\:f(x)=x\sqrt{x-15}
|
inverse of 4/(x+2)
|
inverse\:\frac{4}{x+2}
|
range of cos^2(x)
|
range\:\cos^{2}(x)
|
intercepts of f(x)=2x^2+20x-4
|
intercepts\:f(x)=2x^{2}+20x-4
|
inverse of f(x)=2ln(3x+2)-4
|
inverse\:f(x)=2\ln(3x+2)-4
|
amplitude of tan(x+(pi)/2)
|
amplitude\:\tan(x+\frac{\pi}{2})
|
distance (0,0)(17,17)
|
distance\:(0,0)(17,17)
|
parity tan^{-1}(sec(A))
|
parity\:\tan^{-1}(\sec(A))
|
parity sqrt((tan(x-1))\div (tan(x+1)))
|
parity\:\sqrt{(\tan(x-1))\div\:(\tan(x+1))}
|
critical points of ln(4x^2+2x-11)
|
critical\:points\:\ln(4x^{2}+2x-11)
|
inverse of f(x)=log_{6}(x+2)-log_{6}(2)
|
inverse\:f(x)=\log_{6}(x+2)-\log_{6}(2)
|
asymptotes of f(x)=(x^2+7x-18)/(x^2-4)
|
asymptotes\:f(x)=\frac{x^{2}+7x-18}{x^{2}-4}
|
extreme points of f(x)=4x^2-6
|
extreme\:points\:f(x)=4x^{2}-6
|
asymptotes of f(x)=(x+8)/(x+9)
|
asymptotes\:f(x)=\frac{x+8}{x+9}
|
inverse of f(x)=x^3-7
|
inverse\:f(x)=x^{3}-7
|
domain of sqrt(5x+1)
|
domain\:\sqrt{5x+1}
|
inverse of y=(-2)/(x+1)
|
inverse\:y=\frac{-2}{x+1}
|
domain of (7/x)/(7/x+7)
|
domain\:\frac{\frac{7}{x}}{\frac{7}{x}+7}
|
range of x^2+x+2
|
range\:x^{2}+x+2
|
domain of f(x)=arcsin(2x^2-1)
|
domain\:f(x)=\arcsin(2x^{2}-1)
|
range of f(x)=sqrt(6x)
|
range\:f(x)=\sqrt{6x}
|
intercepts of y=-2
|
intercepts\:y=-2
|
domain of f(x)=((1-5x))/2
|
domain\:f(x)=\frac{(1-5x)}{2}
|
inverse of f(x)=(x-5)/x
|
inverse\:f(x)=\frac{x-5}{x}
|
asymptotes of f(x)=((3x^3-3))/(x-x^2)
|
asymptotes\:f(x)=\frac{(3x^{3}-3)}{x-x^{2}}
|
inverse of f(x)=(x-4)/(3x+5)
|
inverse\:f(x)=\frac{x-4}{3x+5}
|
domain of f(x)=(t+1)/(t^2-t-2)
|
domain\:f(x)=\frac{t+1}{t^{2}-t-2}
|
domain of f(x)= 4/(sqrt(4-2x))
|
domain\:f(x)=\frac{4}{\sqrt{4-2x}}
|
critical points of x/(x^2+2)
|
critical\:points\:\frac{x}{x^{2}+2}
|
intercepts of f(x)=x^3+8x^2+15x
|
intercepts\:f(x)=x^{3}+8x^{2}+15x
|
line (1,-5)(7,1)
|
line\:(1,-5)(7,1)
|
asymptotes of-2/x
|
asymptotes\:-\frac{2}{x}
|
extreme points of f(x)=4x^3-3x^2-18x+17
|
extreme\:points\:f(x)=4x^{3}-3x^{2}-18x+17
|
domain of (sqrt(4-x))^2+6
|
domain\:(\sqrt{4-x})^{2}+6
|
inverse of f(x)=x^2+6x-6
|
inverse\:f(x)=x^{2}+6x-6
|
range of sqrt(x+2)-2
|
range\:\sqrt{x+2}-2
|
midpoint (0,2),(8,8)
|
midpoint\:(0,2),(8,8)
|
intercepts of f(x)=-6x^2-4x-5
|
intercepts\:f(x)=-6x^{2}-4x-5
|
intercepts of (-4x-6)/(3x-2)
|
intercepts\:\frac{-4x-6}{3x-2}
|
domain of f(x)=ln(3-7x)
|
domain\:f(x)=\ln(3-7x)
|
extreme points of f(x)=-6x^2+18000x
|
extreme\:points\:f(x)=-6x^{2}+18000x
|
inflection points of x^3-2x^2-4x
|
inflection\:points\:x^{3}-2x^{2}-4x
|
extreme points of f(x)=120x-0.4x^4+800
|
extreme\:points\:f(x)=120x-0.4x^{4}+800
|
line (-2,3)(4,5)
|
line\:(-2,3)(4,5)
|
domain of f(x)=sqrt(5x-30)
|
domain\:f(x)=\sqrt{5x-30}
|
critical points of f(x)=t^4-16t^3+64t^2
|
critical\:points\:f(x)=t^{4}-16t^{3}+64t^{2}
|
distance (2,-7),(9,-2)
|
distance\:(2,-7),(9,-2)
|
inverse of f(x)=log_{5}(x^3)
|
inverse\:f(x)=\log_{5}(x^{3})
|
line-5,-2
|
line\:-5,-2
|
asymptotes of f(x)=(3x+5)/(x-2)
|
asymptotes\:f(x)=\frac{3x+5}{x-2}
|
domain of f(x)= 1/2 x+1
|
domain\:f(x)=\frac{1}{2}x+1
|
extreme points of y=(x-1)^2(x-2)^3
|
extreme\:points\:y=(x-1)^{2}(x-2)^{3}
|
line (4,10)(12,18)
|
line\:(4,10)(12,18)
|
intercepts of f(x)=(x^2+2x-3)/(x^2-1)
|
intercepts\:f(x)=\frac{x^{2}+2x-3}{x^{2}-1}
|
midpoint (-6.3,5.2)(1.8,-1)
|
midpoint\:(-6.3,5.2)(1.8,-1)
|
asymptotes of f(x)=((x^2-x))/(x^2-6x+5)
|
asymptotes\:f(x)=\frac{(x^{2}-x)}{x^{2}-6x+5}
|
domain of f=-sqrt(x-1)e^{1/x}
|
domain\:f=-\sqrt{x-1}e^{\frac{1}{x}}
|
critical points of f(x)=xsqrt(16-x^2)
|
critical\:points\:f(x)=x\sqrt{16-x^{2}}
|
intercepts of f(x)=x^2-5x+6
|
intercepts\:f(x)=x^{2}-5x+6
|
slope intercept of 2x-y=-5
|
slope\:intercept\:2x-y=-5
|
asymptotes of f(x)=(x-1)/(x+2)
|
asymptotes\:f(x)=\frac{x-1}{x+2}
|
domain of g(x)=sqrt(x(x-2))
|
domain\:g(x)=\sqrt{x(x-2)}
|
inflection points of 3x^5-5x^3
|
inflection\:points\:3x^{5}-5x^{3}
|
extreme points of f(x)=xsqrt(196-x^2)
|
extreme\:points\:f(x)=x\sqrt{196-x^{2}}
|
intercepts of (3x^2-3)/(x^2-5x+4)
|
intercepts\:\frac{3x^{2}-3}{x^{2}-5x+4}
|
slope of 5x-2y=4
|
slope\:5x-2y=4
|
critical points of f(x)=2.6+2.2x-0.6x^2
|
critical\:points\:f(x)=2.6+2.2x-0.6x^{2}
|
domain of f(x)=ln((x^2-3)/(1-x^2))
|
domain\:f(x)=\ln(\frac{x^{2}-3}{1-x^{2}})
|
slope intercept of 2x+2y=4
|
slope\:intercept\:2x+2y=4
|
inverse of f(x)=8sqrt(x),x>= 0
|
inverse\:f(x)=8\sqrt{x},x\ge\:0
|
domain of f(x)=(1/5)
|
domain\:f(x)=(\frac{1}{5})
|
slope of 4x-1=3y+5
|
slope\:4x-1=3y+5
|
domain of f(x)= 5/((\frac{x){x+5})}
|
domain\:f(x)=\frac{5}{(\frac{x}{x+5})}
|
inflection points of f(x)=-4/(x^2+1)
|
inflection\:points\:f(x)=-\frac{4}{x^{2}+1}
|
domain of 1/x+2
|
domain\:\frac{1}{x}+2
|