critical points of f(x)=x^4-162x^2+6561
|
critical\:points\:f(x)=x^{4}-162x^{2}+6561
|
perpendicular y=2x+3,\at (1,3)
|
perpendicular\:y=2x+3,\at\:(1,3)
|
asymptotes of f(x)= 8/((2x-5)^3)
|
asymptotes\:f(x)=\frac{8}{(2x-5)^{3}}
|
asymptotes of f(x)=(x^2+8x-4)/(-2x-4)
|
asymptotes\:f(x)=\frac{x^{2}+8x-4}{-2x-4}
|
slope of a
|
slope\:a
|
inflection points of f(x)= x/(x^2-1)
|
inflection\:points\:f(x)=\frac{x}{x^{2}-1}
|
range of sqrt(x-5)+3
|
range\:\sqrt{x-5}+3
|
inverse of f(x)=(x+5)/(-4x)
|
inverse\:f(x)=\frac{x+5}{-4x}
|
midpoint (-4,3)(-2,-5)
|
midpoint\:(-4,3)(-2,-5)
|
extreme points of f(x)= 1/(1-x)
|
extreme\:points\:f(x)=\frac{1}{1-x}
|
domain of f(x)=-7/((2+x)^2)
|
domain\:f(x)=-\frac{7}{(2+x)^{2}}
|
slope intercept of-6y-3x=5x+4
|
slope\:intercept\:-6y-3x=5x+4
|
line (0.003514,6.61),((0.003203,6.26))
|
line\:(0.003514,6.61),((0.003203,6.26))
|
inverse of g(x)=(-x+5)/2
|
inverse\:g(x)=\frac{-x+5}{2}
|
y=-x^2+4x
|
y=-x^{2}+4x
|
critical points of f(x)=-x^2+3x
|
critical\:points\:f(x)=-x^{2}+3x
|
domain of f(x)=2xsqrt(x)^3
|
domain\:f(x)=2x\sqrt{x}^{3}
|
line (2.3,3)(5.1,0)
|
line\:(2.3,3)(5.1,0)
|
asymptotes of f(x)=(-6)/(x+9)
|
asymptotes\:f(x)=\frac{-6}{x+9}
|
inverse of f(x)=6-x
|
inverse\:f(x)=6-x
|
domain of f(x)=-6x+1
|
domain\:f(x)=-6x+1
|
inflection points of f(x)=4x^3-6x^2+7x-7
|
inflection\:points\:f(x)=4x^{3}-6x^{2}+7x-7
|
symmetry-x^3+3x^2+10x
|
symmetry\:-x^{3}+3x^{2}+10x
|
inflection points of x^{1/7}(x+8)
|
inflection\:points\:x^{\frac{1}{7}}(x+8)
|
critical points of f(x)=4x^2
|
critical\:points\:f(x)=4x^{2}
|
domain of f(x)=e^{cos(x)}
|
domain\:f(x)=e^{\cos(x)}
|
inverse of g(x)= x/2
|
inverse\:g(x)=\frac{x}{2}
|
parallel 5x+2y=6
|
parallel\:5x+2y=6
|
inverse of f(x)=(x-2)/(3x+1)
|
inverse\:f(x)=\frac{x-2}{3x+1}
|
asymptotes of (5x+25)/(2x+7)
|
asymptotes\:\frac{5x+25}{2x+7}
|
domain of f(x)=3(2)^x
|
domain\:f(x)=3(2)^{x}
|
domain of f(x)=sqrt(x+36)
|
domain\:f(x)=\sqrt{x+36}
|
domain of 2^x
|
domain\:2^{x}
|
intercepts of f(x)=(0,-3)(-9,-9)
|
intercepts\:f(x)=(0,-3)(-9,-9)
|
critical points of (x^2-2x+4)/(x-2)
|
critical\:points\:\frac{x^{2}-2x+4}{x-2}
|
range of f(x)=(1-sqrt(x))^2
|
range\:f(x)=(1-\sqrt{x})^{2}
|
inflection points of f(x)=x^3-6x^2+12x-8
|
inflection\:points\:f(x)=x^{3}-6x^{2}+12x-8
|
inflection points of y=(-x^2)/(x^2-2x+8)
|
inflection\:points\:y=\frac{-x^{2}}{x^{2}-2x+8}
|
inverse of y=ln(x-2)
|
inverse\:y=\ln(x-2)
|
domain of f(x)=(4x+5)/(x^2-x+1)
|
domain\:f(x)=\frac{4x+5}{x^{2}-x+1}
|
slope of x+2y=6
|
slope\:x+2y=6
|
range of 5ln(x)
|
range\:5\ln(x)
|
inverse of f(x)=(x+3)^2
|
inverse\:f(x)=(x+3)^{2}
|
critical points of f(x)=x^2e^{(18x)}
|
critical\:points\:f(x)=x^{2}e^{(18x)}
|
domain of f(x)=-sqrt(x-1)-3
|
domain\:f(x)=-\sqrt{x-1}-3
|
midpoint (2,3)(12,-15)
|
midpoint\:(2,3)(12,-15)
|
critical points of f(x)= 4/(x^2+8)
|
critical\:points\:f(x)=\frac{4}{x^{2}+8}
|
domain of f(x)= 2/(7-x)
|
domain\:f(x)=\frac{2}{7-x}
|
domain of f(x)=-2^x+100
|
domain\:f(x)=-2^{x}+100
|
domain of f(x)=(x+6)/(x^2-25)
|
domain\:f(x)=\frac{x+6}{x^{2}-25}
|
domain of f(x)= x/(1+x^2)
|
domain\:f(x)=\frac{x}{1+x^{2}}
|
intercepts of f(x)=(-5x+5)/(3x+7)
|
intercepts\:f(x)=\frac{-5x+5}{3x+7}
|
domain of f(x)=sqrt(t+3)
|
domain\:f(x)=\sqrt{t+3}
|
distance (-4,-5)(2,7)
|
distance\:(-4,-5)(2,7)
|
slope of 7x+y=3
|
slope\:7x+y=3
|
domain of e^{-t}
|
domain\:e^{-t}
|
inflection points of f(x)=((x^2+1))/x
|
inflection\:points\:f(x)=\frac{(x^{2}+1)}{x}
|
amplitude of 4sin(2x-(pi)/3)
|
amplitude\:4\sin(2x-\frac{\pi}{3})
|
inverse of f(x)=x3+1
|
inverse\:f(x)=x3+1
|
inverse of x^2-3x+2
|
inverse\:x^{2}-3x+2
|
line (-4,12)m=-4
|
line\:(-4,12)m=-4
|
domain of f(x)=-x^6+7x^2+9x+12
|
domain\:f(x)=-x^{6}+7x^{2}+9x+12
|
intercepts of f(x)= 1/(x+5)
|
intercepts\:f(x)=\frac{1}{x+5}
|
inverse of sqrt(2x-1)
|
inverse\:\sqrt{2x-1}
|
range of (4x+3)/(x-3)
|
range\:\frac{4x+3}{x-3}
|
inflection points of f(x)=(x-3)e^{-x}
|
inflection\:points\:f(x)=(x-3)e^{-x}
|
inverse of sqrt(16x-48)-3
|
inverse\:\sqrt{16x-48}-3
|
domain of sqrt((4x+3)/(2x+5))
|
domain\:\sqrt{\frac{4x+3}{2x+5}}
|
extreme points of f(x)=x^3-6x^2+9x+5
|
extreme\:points\:f(x)=x^{3}-6x^{2}+9x+5
|
domain of (x^2-6x+8)/(x^2-16)
|
domain\:\frac{x^{2}-6x+8}{x^{2}-16}
|
inverse of f(n)= 1/9 n-4/9
|
inverse\:f(n)=\frac{1}{9}n-\frac{4}{9}
|
critical points of f(x)=2x^3-3x^2-36x
|
critical\:points\:f(x)=2x^{3}-3x^{2}-36x
|
range of (x-1)^2-4
|
range\:(x-1)^{2}-4
|
inverse of f(x)=3x+3
|
inverse\:f(x)=3x+3
|
domain of f(x)=x=-1
|
domain\:f(x)=x=-1
|
domain of f(x)=-sqrt(x+2)
|
domain\:f(x)=-\sqrt{x+2}
|
symmetry y=2x^2+3
|
symmetry\:y=2x^{2}+3
|
distance (-10,7)(2,5)
|
distance\:(-10,7)(2,5)
|
inverse of f(x)=-(x-4)^2+1
|
inverse\:f(x)=-(x-4)^{2}+1
|
extreme points of f(x)=(x^2)/2+1/x
|
extreme\:points\:f(x)=\frac{x^{2}}{2}+\frac{1}{x}
|
domain of g(t)=-3/(2t^{3/2)}
|
domain\:g(t)=-\frac{3}{2t^{\frac{3}{2}}}
|
range of 5+(6+x)^{1/2}
|
range\:5+(6+x)^{\frac{1}{2}}
|
domain of f(x)= 5/(sqrt(x-7))
|
domain\:f(x)=\frac{5}{\sqrt{x-7}}
|
domain of (x^2-4)/(x-2)
|
domain\:\frac{x^{2}-4}{x-2}
|
intercepts of f(x)=y=2x
|
intercepts\:f(x)=y=2x
|
inverse of sqrt(x^2+7x)
|
inverse\:\sqrt{x^{2}+7x}
|
range of f(x)=2xy-4x+6y-3=0
|
range\:f(x)=2xy-4x+6y-3=0
|
slope intercept of 4x+y+5=0
|
slope\:intercept\:4x+y+5=0
|
slope intercept of x+3y=0
|
slope\:intercept\:x+3y=0
|
inverse of-6
|
inverse\:-6
|
y= 1/x
|
y=\frac{1}{x}
|
domain of f(x)= 1/(|x+3|)
|
domain\:f(x)=\frac{1}{|x+3|}
|
domain of f(x)=x^2+3x-2
|
domain\:f(x)=x^{2}+3x-2
|
perpendicular 2x-2y+4=0,\at (2,4)
|
perpendicular\:2x-2y+4=0,\at\:(2,4)
|
domain of 1/(3x-6)
|
domain\:\frac{1}{3x-6}
|
range of-sqrt(64-x^2)
|
range\:-\sqrt{64-x^{2}}
|
domain of 1/(1-x)
|
domain\:\frac{1}{1-x}
|
line (5,-2)(-3,4)
|
line\:(5,-2)(-3,4)
|
range of f(x)=2x+4
|
range\:f(x)=2x+4
|
line (68,63.8),(104,106.8)
|
line\:(68,63.8),(104,106.8)
|