parity s(t)=(5t)/(sin(t))
|
parity\:s(t)=\frac{5t}{\sin(t)}
|
intercepts of ln(x-5)
|
intercepts\:\ln(x-5)
|
asymptotes of f(x)=(3x)/(x^2+4)
|
asymptotes\:f(x)=\frac{3x}{x^{2}+4}
|
critical points of 3x^2+6x
|
critical\:points\:3x^{2}+6x
|
shift-3cos(3x-5)
|
shift\:-3\cos(3x-5)
|
domain of f(x)=(5x+17)/(-6x-12)
|
domain\:f(x)=\frac{5x+17}{-6x-12}
|
domain of 1/(6x-3)
|
domain\:\frac{1}{6x-3}
|
intercepts of f(x)=x^2-3x-10
|
intercepts\:f(x)=x^{2}-3x-10
|
critical points of f(x)=sqrt(25-x^2)
|
critical\:points\:f(x)=\sqrt{25-x^{2}}
|
domain of f(x)=(x^2+1+5x)/(x^2+1+2x)
|
domain\:f(x)=\frac{x^{2}+1+5x}{x^{2}+1+2x}
|
perpendicular y=3x+2
|
perpendicular\:y=3x+2
|
distance (-1,-6)(-6,5)
|
distance\:(-1,-6)(-6,5)
|
parity f(x)=7sec(x)-2x
|
parity\:f(x)=7\sec(x)-2x
|
domain of (x-2)/(x^2-9)
|
domain\:\frac{x-2}{x^{2}-9}
|
inverse of f(x)=sqrt(3x)
|
inverse\:f(x)=\sqrt{3x}
|
parity f(x)=-2x^5+5x^2
|
parity\:f(x)=-2x^{5}+5x^{2}
|
parallel 5x+6y=7
|
parallel\:5x+6y=7
|
domain of y=sqrt(81-x)
|
domain\:y=\sqrt{81-x}
|
inverse of y=3x+1
|
inverse\:y=3x+1
|
line m=-3,\at (-2,-3)
|
line\:m=-3,\at\:(-2,-3)
|
line m=-1/7 ,\at (4,-6)
|
line\:m=-\frac{1}{7},\at\:(4,-6)
|
domain of f(x)=sqrt(36-4x)
|
domain\:f(x)=\sqrt{36-4x}
|
inverse of-x^2-4
|
inverse\:-x^{2}-4
|
symmetry y=x^2-7
|
symmetry\:y=x^{2}-7
|
periodicity of f(x)=cos((pi)/3 x)
|
periodicity\:f(x)=\cos(\frac{\pi}{3}x)
|
domain of f(x)=3x+5
|
domain\:f(x)=3x+5
|
range of-sqrt(2x+3)
|
range\:-\sqrt{2x+3}
|
inverse of f(x)= 3/4 x+5/4
|
inverse\:f(x)=\frac{3}{4}x+\frac{5}{4}
|
inverse of f(x)=(13)/x
|
inverse\:f(x)=\frac{13}{x}
|
parity f(x)=(xcos(x))/(x^2+cot(x))
|
parity\:f(x)=\frac{xcos(x)}{x^{2}+\cot(x)}
|
asymptotes of 2^x
|
asymptotes\:2^{x}
|
domain of f(x)=\sqrt[6]{x^2-8x-9}
|
domain\:f(x)=\sqrt[6]{x^{2}-8x-9}
|
line (3,0)(-2,-5)
|
line\:(3,0)(-2,-5)
|
asymptotes of f(x)=(2x^3-8x)/(x^3+2x^2)
|
asymptotes\:f(x)=\frac{2x^{3}-8x}{x^{3}+2x^{2}}
|
domain of f(x)=sqrt((4x-8)/(x+3))
|
domain\:f(x)=\sqrt{\frac{4x-8}{x+3}}
|
inverse of 2+sqrt(3+4x)
|
inverse\:2+\sqrt{3+4x}
|
slope intercept of y= 2/3 x-5
|
slope\:intercept\:y=\frac{2}{3}x-5
|
asymptotes of f(x)= 1/(x^2+3)
|
asymptotes\:f(x)=\frac{1}{x^{2}+3}
|
domain of f(x)= 7/x*9/(x+9)
|
domain\:f(x)=\frac{7}{x}\cdot\:\frac{9}{x+9}
|
domain of f(x)=(3x-2)/(5x+1)
|
domain\:f(x)=\frac{3x-2}{5x+1}
|
intercepts of 3x^2+24x-51
|
intercepts\:3x^{2}+24x-51
|
extreme points of f(x)=x^2-10x+5
|
extreme\:points\:f(x)=x^{2}-10x+5
|
domain of f(x)=log_{2}((x+9)/x)
|
domain\:f(x)=\log_{2}(\frac{x+9}{x})
|
periodicity of f(x)=sin(x)
|
periodicity\:f(x)=\sin(x)
|
asymptotes of f(x)= 2/(x-6)
|
asymptotes\:f(x)=\frac{2}{x-6}
|
domain of y=(x-4)/(x^2-2x-3)
|
domain\:y=\frac{x-4}{x^{2}-2x-3}
|
inverse of y=ln(x+3)
|
inverse\:y=\ln(x+3)
|
asymptotes of f(x)=-(1/2)^x
|
asymptotes\:f(x)=-(\frac{1}{2})^{x}
|
inverse of f(x)=3-1/2 x
|
inverse\:f(x)=3-\frac{1}{2}x
|
slope intercept of 3x+4
|
slope\:intercept\:3x+4
|
inverse of sqrt(8-x)
|
inverse\:\sqrt{8-x}
|
domain of f(x)=(8x)/(x-9)
|
domain\:f(x)=\frac{8x}{x-9}
|
inflection points of f(x)=xsqrt(x+12)
|
inflection\:points\:f(x)=x\sqrt{x+12}
|
asymptotes of f(x)=sqrt(x^2+x)
|
asymptotes\:f(x)=\sqrt{x^{2}+x}
|
domain of 1/(x^2-x-2)
|
domain\:\frac{1}{x^{2}-x-2}
|
domain of f(x)= 1/((x^2+1))
|
domain\:f(x)=\frac{1}{(x^{2}+1)}
|
inverse of f(x)=((x+3))/((x-4))
|
inverse\:f(x)=\frac{(x+3)}{(x-4)}
|
asymptotes of f(x)=(x-2)/(x-3)
|
asymptotes\:f(x)=\frac{x-2}{x-3}
|
asymptotes of f(x)=(3x-4)/(-2x+7)
|
asymptotes\:f(x)=\frac{3x-4}{-2x+7}
|
parallel y=2x+3,\at 1,2
|
parallel\:y=2x+3,\at\:1,2
|
symmetry (x^2)/(64)-(y^2)/(36)=1
|
symmetry\:\frac{x^{2}}{64}-\frac{y^{2}}{36}=1
|
periodicity of 1/3 cos(x)
|
periodicity\:\frac{1}{3}\cos(x)
|
extreme points of f(x)=((x^2+12))/(x-3)
|
extreme\:points\:f(x)=\frac{(x^{2}+12)}{x-3}
|
domain of f(x)=x^2+3x
|
domain\:f(x)=x^{2}+3x
|
midpoint (-1,1)(7,-3)
|
midpoint\:(-1,1)(7,-3)
|
domain of f(x)=-2x^2+3x
|
domain\:f(x)=-2x^{2}+3x
|
critical points of f(x)=2x^3+3x^2-36x+20
|
critical\:points\:f(x)=2x^{3}+3x^{2}-36x+20
|
shift f(x)=2sin(2x+pi)+3
|
shift\:f(x)=2\sin(2x+\pi)+3
|
midpoint (1,11),(13,-5)
|
midpoint\:(1,11),(13,-5)
|
critical points of f(x)=3xsqrt(2x^2+1)
|
critical\:points\:f(x)=3x\sqrt{2x^{2}+1}
|
midpoint (-5,2)(3,0)
|
midpoint\:(-5,2)(3,0)
|
domain of-x^2+8x-14
|
domain\:-x^{2}+8x-14
|
symmetry x/(x^2-4)
|
symmetry\:\frac{x}{x^{2}-4}
|
intercepts of y=3^x
|
intercepts\:y=3^{x}
|
domain of f(x)=(x-4)/(x+4)
|
domain\:f(x)=\frac{x-4}{x+4}
|
domain of y=tan((pi)/4 x)
|
domain\:y=\tan(\frac{\pi}{4}x)
|
inverse of f(x)=sqrt(2+7x)
|
inverse\:f(x)=\sqrt{2+7x}
|
inverse of f(x)=2^{1-x}
|
inverse\:f(x)=2^{1-x}
|
domain of f(x)=x^2-16
|
domain\:f(x)=x^{2}-16
|
inverse of f(x)=e^{-x}+4
|
inverse\:f(x)=e^{-x}+4
|
asymptotes of y= 1/(x+5)
|
asymptotes\:y=\frac{1}{x+5}
|
domain of y=\sqrt[6]{x}
|
domain\:y=\sqrt[6]{x}
|
distance (-4,2)(2,-6)
|
distance\:(-4,2)(2,-6)
|
intercepts of 2x^2-5x-4
|
intercepts\:2x^{2}-5x-4
|
critical points of f(x)=x^3-6x^2+2x
|
critical\:points\:f(x)=x^{3}-6x^{2}+2x
|
inverse of f(x)=10x-3
|
inverse\:f(x)=10x-3
|
inverse of f(x)= x/(3+x)
|
inverse\:f(x)=\frac{x}{3+x}
|
symmetry (x-3)^2+1
|
symmetry\:(x-3)^{2}+1
|
inverse of 7log_{10}(1+9x)
|
inverse\:7\log_{10}(1+9x)
|
line (-6,5),(0,2)
|
line\:(-6,5),(0,2)
|
inverse of y=f(t)=6t+5
|
inverse\:y=f(t)=6t+5
|
inverse of f(x)=(10)/(sqrt(1-x/(30)))
|
inverse\:f(x)=\frac{10}{\sqrt{1-\frac{x}{30}}}
|
domain of f(x)=sin^{-1}(x)+cos^{-1}(x)
|
domain\:f(x)=\sin^{-1}(x)+\cos^{-1}(x)
|
domain of (x+9)/(8x^2-x-9)
|
domain\:\frac{x+9}{8x^{2}-x-9}
|
domain of f(x)=3*sec(2x+(pi)/2)+2
|
domain\:f(x)=3\cdot\:\sec(2x+\frac{\pi}{2})+2
|
domain of x/(x^2-x-6)
|
domain\:\frac{x}{x^{2}-x-6}
|
5x^2-11x+8
|
5x^{2}-11x+8
|
domain of f(x)=sqrt(3x-2)
|
domain\:f(x)=\sqrt{3x-2}
|
symmetry x=y^2+2
|
symmetry\:x=y^{2}+2
|
intercepts of f(x)=-64x^2+4300x-5140
|
intercepts\:f(x)=-64x^{2}+4300x-5140
|