inverse of f(x)=(x+5)^2+3
|
inverse\:f(x)=(x+5)^{2}+3
|
intercepts of f(x)= 1/4 x^2-3x-7
|
intercepts\:f(x)=\frac{1}{4}x^{2}-3x-7
|
extreme points of f(x)=x^3-6x^2+12x-8
|
extreme\:points\:f(x)=x^{3}-6x^{2}+12x-8
|
inverse of f(x)=6-3x
|
inverse\:f(x)=6-3x
|
perpendicular y=-x+3
|
perpendicular\:y=-x+3
|
inverse of f(x)=49x^2
|
inverse\:f(x)=49x^{2}
|
asymptotes of-1+2/((x+4)^2)
|
asymptotes\:-1+\frac{2}{(x+4)^{2}}
|
domain of (100)/(x^2)
|
domain\:\frac{100}{x^{2}}
|
line (0,0)(4,12.88)
|
line\:(0,0)(4,12.88)
|
domain of tan(x)
|
domain\:\tan(x)
|
domain of y=x^2-4
|
domain\:y=x^{2}-4
|
domain of f(x)=x^2-x
|
domain\:f(x)=x^{2}-x
|
distance (-1,0.6)(1,-3.4)
|
distance\:(-1,0.6)(1,-3.4)
|
domain of f(x)= 1/(sqrt(x))
|
domain\:f(x)=\frac{1}{\sqrt{x}}
|
range of (x-3)/(x^2-1)
|
range\:\frac{x-3}{x^{2}-1}
|
y=sqrt(x+2)
|
y=\sqrt{x+2}
|
domain of f(x)= 8/(1-e^x)
|
domain\:f(x)=\frac{8}{1-e^{x}}
|
inverse of f(x)= 1/(1/x)
|
inverse\:f(x)=\frac{1}{\frac{1}{x}}
|
asymptotes of f(x)=x-4+3/x
|
asymptotes\:f(x)=x-4+\frac{3}{x}
|
domain of f(x)=x^2-6x+13
|
domain\:f(x)=x^{2}-6x+13
|
range of (x^2-4x+3)/(x-1)
|
range\:\frac{x^{2}-4x+3}{x-1}
|
extreme points of f(x)=(y-2)^3=(x-4)
|
extreme\:points\:f(x)=(y-2)^{3}=(x-4)
|
midpoint (5,-10)(9,-2)
|
midpoint\:(5,-10)(9,-2)
|
domain of f(x)=sqrt(2-(x-1)/(x-3))
|
domain\:f(x)=\sqrt{2-\frac{x-1}{x-3}}
|
inverse of f(x)=(1-2x)^2+5
|
inverse\:f(x)=(1-2x)^{2}+5
|
domain of x^{1/2}
|
domain\:x^{\frac{1}{2}}
|
range of x^2+4x-5
|
range\:x^{2}+4x-5
|
inverse of f(x)=11.6-4x
|
inverse\:f(x)=11.6-4x
|
extreme points of f(x)=3x^2-10x+3
|
extreme\:points\:f(x)=3x^{2}-10x+3
|
domain of f(x)=(sqrt(x+3))/(x-4)
|
domain\:f(x)=\frac{\sqrt{x+3}}{x-4}
|
asymptotes of f(x)=(x^2+2x)/(x^2-2x)
|
asymptotes\:f(x)=\frac{x^{2}+2x}{x^{2}-2x}
|
domain of tan(2theta-(11pi)/6)-1
|
domain\:\tan(2\theta-\frac{11\pi}{6})-1
|
parity f(x)=-x^2-6x
|
parity\:f(x)=-x^{2}-6x
|
domain of f(x)= 2/(x-5)
|
domain\:f(x)=\frac{2}{x-5}
|
intercepts of f(x)=(x^2+3x)/(x^2+x-6)
|
intercepts\:f(x)=\frac{x^{2}+3x}{x^{2}+x-6}
|
midpoint (-2,-1)(3,2)
|
midpoint\:(-2,-1)(3,2)
|
parity f(x)=-3x^3+2x
|
parity\:f(x)=-3x^{3}+2x
|
intercepts of f(x)=y=0.8x-0.6
|
intercepts\:f(x)=y=0.8x-0.6
|
domain of f(x)=(x+2)/(x^2-1)
|
domain\:f(x)=\frac{x+2}{x^{2}-1}
|
domain of sqrt(x+2)
|
domain\:\sqrt{x+2}
|
asymptotes of f(x)=-x^2-3x+4
|
asymptotes\:f(x)=-x^{2}-3x+4
|
domain of f(x)=3ln(x)+4
|
domain\:f(x)=3\ln(x)+4
|
inverse of f(x)=(2x-1)/(x+2)
|
inverse\:f(x)=\frac{2x-1}{x+2}
|
slope of-4x+y=2
|
slope\:-4x+y=2
|
domain of g(x)=(sqrt(x-2))/(x-7)
|
domain\:g(x)=\frac{\sqrt{x-2}}{x-7}
|
extreme points of x^3+37x+250,1<= x<= 10
|
extreme\:points\:x^{3}+37x+250,1\le\:x\le\:10
|
asymptotes of f(x)=(13x+12)/(23x-12)
|
asymptotes\:f(x)=\frac{13x+12}{23x-12}
|
parity (4e^x)/(cos(x))
|
parity\:\frac{4e^{x}}{\cos(x)}
|
inverse of 4-(4-x^2)^2
|
inverse\:4-(4-x^{2})^{2}
|
midpoint (300,12)(500,6)
|
midpoint\:(300,12)(500,6)
|
domain of f(x)=(4-x^2)/(x^2+x-6)
|
domain\:f(x)=\frac{4-x^{2}}{x^{2}+x-6}
|
range of (100+440x)/(10+0.01x)
|
range\:\frac{100+440x}{10+0.01x}
|
slope intercept of 3x+4y=7
|
slope\:intercept\:3x+4y=7
|
parallel y=-2x+5
|
parallel\:y=-2x+5
|
critical points of 1-2/(x^3)
|
critical\:points\:1-\frac{2}{x^{3}}
|
inverse of f(x)=log_{3}(3x+4)
|
inverse\:f(x)=\log_{3}(3x+4)
|
inverse of [21]T
|
inverse\:[21]T
|
symmetry y=x^2-4x+5
|
symmetry\:y=x^{2}-4x+5
|
domain of f(x)=sin(x)
|
domain\:f(x)=\sin(x)
|
slope of y=-4/3 x-1
|
slope\:y=-\frac{4}{3}x-1
|
symmetry y=2x^2-4x-14
|
symmetry\:y=2x^{2}-4x-14
|
slope of 8x-7y=56
|
slope\:8x-7y=56
|
inverse of (3-x)/(x+1)
|
inverse\:\frac{3-x}{x+1}
|
domain of (x-8)^3
|
domain\:(x-8)^{3}
|
asymptotes of (x^4)/(x^2+7)
|
asymptotes\:\frac{x^{4}}{x^{2}+7}
|
line x-y=1
|
line\:x-y=1
|
distance (1,1),(9,7)
|
distance\:(1,1),(9,7)
|
intercepts of f(x)=2(x-1)
|
intercepts\:f(x)=2(x-1)
|
intercepts of 2x-3+(5x+5)/(x^2-1)
|
intercepts\:2x-3+\frac{5x+5}{x^{2}-1}
|
shift 3sin(pi x+4)-3
|
shift\:3\sin(\pi\:x+4)-3
|
asymptotes of f(x)=(x^2-6x+9)/(x^3-7x^2)
|
asymptotes\:f(x)=\frac{x^{2}-6x+9}{x^{3}-7x^{2}}
|
domain of f(x)= 3/(x-4)
|
domain\:f(x)=\frac{3}{x-4}
|
critical points of f(x)=8x^5-5x^4-20x^3
|
critical\:points\:f(x)=8x^{5}-5x^{4}-20x^{3}
|
range of x(x+1)(x-2)^2
|
range\:x(x+1)(x-2)^{2}
|
inverse of f(x)=(-x+1)/(x-3)
|
inverse\:f(x)=(-x+1)/(x-3)
|
intercepts of f(x)=(8x^2)/(x^4+16)
|
intercepts\:f(x)=\frac{8x^{2}}{x^{4}+16}
|
extreme points of f(x)=x^5
|
extreme\:points\:f(x)=x^{5}
|
distance (-3,6)(-6,-2)
|
distance\:(-3,6)(-6,-2)
|
inverse of 2.5t+11.5
|
inverse\:2.5t+11.5
|
domain of f(x)= 5/(sqrt(x+2))
|
domain\:f(x)=\frac{5}{\sqrt{x+2}}
|
perpendicular y=-3x+5
|
perpendicular\:y=-3x+5
|
asymptotes of f(x)=(3x^2+7)/(-2x-3)
|
asymptotes\:f(x)=\frac{3x^{2}+7}{-2x-3}
|
domain of f(x)= 4/(x-1)-2
|
domain\:f(x)=\frac{4}{x-1}-2
|
slope intercept of x-y=9
|
slope\:intercept\:x-y=9
|
inflection points of-4/((x-8))
|
inflection\:points\:-\frac{4}{(x-8)}
|
amplitude of-5sin(6x+(pi)/2)
|
amplitude\:-5\sin(6x+\frac{\pi}{2})
|
domain of (x^2-25)/(x-5)
|
domain\:\frac{x^{2}-25}{x-5}
|
range of 4sin(2x-(pi)/3)
|
range\:4\sin(2x-\frac{\pi}{3})
|
inverse of y=2x+1
|
inverse\:y=2x+1
|
inverse of y=x^2+7
|
inverse\:y=x^{2}+7
|
inverse of f(x)=ln(x+7)
|
inverse\:f(x)=\ln(x+7)
|
extreme points of f(x)=4xsqrt(2x^2+3)
|
extreme\:points\:f(x)=4x\sqrt{2x^{2}+3}
|
inverse of y=5^{x/3}
|
inverse\:y=5^{\frac{x}{3}}
|
slope intercept of 16x-8y=17
|
slope\:intercept\:16x-8y=17
|
periodicity of f(x)=-5sin(3/2 x)
|
periodicity\:f(x)=-5\sin(\frac{3}{2}x)
|
symmetry x+1/(x+1)
|
symmetry\:x+\frac{1}{x+1}
|
intercepts of x^3-10x-12
|
intercepts\:x^{3}-10x-12
|
amplitude of y=3sin(2x-pi)
|
amplitude\:y=3\sin(2x-\pi)
|
domain of f(x)=(4x)/(x-2)
|
domain\:f(x)=\frac{4x}{x-2}
|
inverse of f(y,x)=(2.3)
|
inverse\:f(y,x)=(2.3)
|