periodicity of y= 6/5 cos((2x)/7)
|
periodicity\:y=\frac{6}{5}\cos(\frac{2x}{7})
|
inverse of f(x)=(x-1)/7
|
inverse\:f(x)=\frac{x-1}{7}
|
domain of f(x)=-|x|
|
domain\:f(x)=-|x|
|
critical points of f(x)=(x^2-3)/(x+2)
|
critical\:points\:f(x)=\frac{x^{2}-3}{x+2}
|
domain of f(x)= x/(x^2-49)
|
domain\:f(x)=\frac{x}{x^{2}-49}
|
shift f(x)=y=-4cos(2x+(pi)/3)
|
shift\:f(x)=y=-4\cos(2x+\frac{\pi}{3})
|
inverse of f(x)=x^2+2x-1
|
inverse\:f(x)=x^{2}+2x-1
|
domain of f(x)=(-4x-45)/(9x+59)
|
domain\:f(x)=\frac{-4x-45}{9x+59}
|
intercepts of 5^{2x+1}-2^{1-x}
|
intercepts\:5^{2x+1}-2^{1-x}
|
extreme points of f(x)=4+9x^2-6x^3
|
extreme\:points\:f(x)=4+9x^{2}-6x^{3}
|
extreme points of f(x)=4x^3-3x^2-36x+17
|
extreme\:points\:f(x)=4x^{3}-3x^{2}-36x+17
|
inverse of f(x)=ln(x-5)+3
|
inverse\:f(x)=\ln(x-5)+3
|
inverse of f(x)= 1/4 x-12
|
inverse\:f(x)=\frac{1}{4}x-12
|
domain of f(x)=7sqrt(x)+1
|
domain\:f(x)=7\sqrt{x}+1
|
extreme points of y=4x^3-48x-1
|
extreme\:points\:y=4x^{3}-48x-1
|
inflection points of f(x)=x(x-8)^3
|
inflection\:points\:f(x)=x(x-8)^{3}
|
domain of f(x)=x-sqrt(x)
|
domain\:f(x)=x-\sqrt{x}
|
range of 2sqrt(x+4)-3
|
range\:2\sqrt{x+4}-3
|
domain of x^3+1
|
domain\:x^{3}+1
|
inverse of f(x)=sqrt(64-x^2)
|
inverse\:f(x)=\sqrt{64-x^{2}}
|
inverse of sin^2(x)
|
inverse\:\sin^{2}(x)
|
inverse of (x-10)^3+5
|
inverse\:(x-10)^{3}+5
|
asymptotes of f(x)=(x-16)/(x+6)
|
asymptotes\:f(x)=\frac{x-16}{x+6}
|
domain of f(x)=(x-5)/(sqrt(x-2))
|
domain\:f(x)=\frac{x-5}{\sqrt{x-2}}
|
x+1
|
x+1
|
asymptotes of x/(1+x^2)
|
asymptotes\:\frac{x}{1+x^{2}}
|
asymptotes of 1/((x-2)^2)
|
asymptotes\:\frac{1}{(x-2)^{2}}
|
intercepts of f(x)=y=(x^2-7x-8)/(x+6)
|
intercepts\:f(x)=y=\frac{x^{2}-7x-8}{x+6}
|
intercepts of f(x)=-5x^4-45x^2
|
intercepts\:f(x)=-5x^{4}-45x^{2}
|
line (5,122),(10,242)
|
line\:(5,122),(10,242)
|
intercepts of f(x)=2x-y-8=0
|
intercepts\:f(x)=2x-y-8=0
|
periodicity of f(x)=3sin((2pitheta)/5)
|
periodicity\:f(x)=3\sin(\frac{2\pi\theta}{5})
|
domain of f(x)=\sqrt[3]{t-2}
|
domain\:f(x)=\sqrt[3]{t-2}
|
inverse of x^2-8x+10
|
inverse\:x^{2}-8x+10
|
inverse of f(x)=2(n-2)^3
|
inverse\:f(x)=2(n-2)^{3}
|
asymptotes of y=(2x^2+5x-3)/(x+3)
|
asymptotes\:y=\frac{2x^{2}+5x-3}{x+3}
|
domain of f(x)=(sqrt(1-x))+(sqrt(36-x^2))
|
domain\:f(x)=(\sqrt{1-x})+(\sqrt{36-x^{2}})
|
domain of f(x)=-x+11
|
domain\:f(x)=-x+11
|
inverse of f(x)=-2(x+1)^2-3
|
inverse\:f(x)=-2(x+1)^{2}-3
|
inverse of f(x)=y=4x-x^2
|
inverse\:f(x)=y=4x-x^{2}
|
line (8,)(-9,)m=-5/4
|
line\:(8,)(-9,)m=-\frac{5}{4}
|
slope intercept of 2x+y=-1
|
slope\:intercept\:2x+y=-1
|
range of f(x)=(5x)/(x-3)
|
range\:f(x)=\frac{5x}{x-3}
|
domain of x^2+2
|
domain\:x^{2}+2
|
range of-x^2-6x
|
range\:-x^{2}-6x
|
line (0,7),(1,0)
|
line\:(0,7),(1,0)
|
inverse of f(x)=-16x^2+40
|
inverse\:f(x)=-16x^{2}+40
|
asymptotes of 2x^2-5x+1
|
asymptotes\:2x^{2}-5x+1
|
midpoint (-1,3)(4,-2)
|
midpoint\:(-1,3)(4,-2)
|
domain of f(x)=(-9)/(x^2-3)
|
domain\:f(x)=\frac{-9}{x^{2}-3}
|
inverse of y= 1/2 x+8
|
inverse\:y=\frac{1}{2}x+8
|
domain of f(x)=(x+7)/(x^2-49)
|
domain\:f(x)=\frac{x+7}{x^{2}-49}
|
slope of 170
|
slope\:170^{\circ\:}
|
domain of 1/(sqrt(x)-2)
|
domain\:\frac{1}{\sqrt{x}-2}
|
domain of 2cos(3x)
|
domain\:2\cos(3x)
|
parity f(x)=x^4-5
|
parity\:f(x)=x^{4}-5
|
slope of x=-8
|
slope\:x=-8
|
domain of x^3+8
|
domain\:x^{3}+8
|
inflection points of f(x)= 1/6 x^4-31x^2
|
inflection\:points\:f(x)=\frac{1}{6}x^{4}-31x^{2}
|
inverse of f(x)= 3/(x-3)-2
|
inverse\:f(x)=\frac{3}{x-3}-2
|
domain of f(x)=-(13)/((t+2)^2)
|
domain\:f(x)=-\frac{13}{(t+2)^{2}}
|
asymptotes of y=(x^2-9)/(x^2+5x)
|
asymptotes\:y=\frac{x^{2}-9}{x^{2}+5x}
|
symmetry y=-3x+1
|
symmetry\:y=-3x+1
|
inverse of f(x)=(5000)/x-300
|
inverse\:f(x)=\frac{5000}{x}-300
|
domain of y=(sqrt(10+x))/(1-x)
|
domain\:y=\frac{\sqrt{10+x}}{1-x}
|
intercepts of 4x^2-24x+34
|
intercepts\:4x^{2}-24x+34
|
critical points of f(x)=(x^2)/(x^2+3)
|
critical\:points\:f(x)=\frac{x^{2}}{x^{2}+3}
|
inverse of f(x)=20-x
|
inverse\:f(x)=20-x
|
domain of f(x)= 1/(2x^2-18)
|
domain\:f(x)=\frac{1}{2x^{2}-18}
|
midpoint (-3.5,-1)(16,-10)
|
midpoint\:(-3.5,-1)(16,-10)
|
asymptotes of f(x)=((1+x^4))/((x^2-x^4))
|
asymptotes\:f(x)=\frac{(1+x^{4})}{(x^{2}-x^{4})}
|
critical points of ((x-1)/(x^2+4))
|
critical\:points\:((x-1)/(x^{2}+4))
|
inverse of f(x)=-19x+13
|
inverse\:f(x)=-19x+13
|
intercepts of f(x)=x-2y=2
|
intercepts\:f(x)=x-2y=2
|
inverse of f(x)=(3x+2)/(2x-5)
|
inverse\:f(x)=\frac{3x+2}{2x-5}
|
midpoint (2,-3)(10,7)
|
midpoint\:(2,-3)(10,7)
|
inverse of 7/(x^2)
|
inverse\:\frac{7}{x^{2}}
|
extreme points of (24x)/(x^2+16)
|
extreme\:points\:\frac{24x}{x^{2}+16}
|
inverse of y=-log_{4}(x)
|
inverse\:y=-\log_{4}(x)
|
inverse of (2/3)^x
|
inverse\:(\frac{2}{3})^{x}
|
domain of f(x)=\sqrt[3]{6x-2}
|
domain\:f(x)=\sqrt[3]{6x-2}
|
monotone intervals f(x)=(24t)/(t^2+16)
|
monotone\:intervals\:f(x)=\frac{24t}{t^{2}+16}
|
line (-3,5),(2,6)
|
line\:(-3,5),(2,6)
|
domain of f(x)= 1/(x^2)-4
|
domain\:f(x)=\frac{1}{x^{2}}-4
|
domain of f(x)=(x-3)^{1/2}
|
domain\:f(x)=(x-3)^{\frac{1}{2}}
|
inverse of (111)
|
inverse\:(111)
|
slope of 1/3 (1,3)
|
slope\:\frac{1}{3}(1,3)
|
inverse of f(x)=x^4+3
|
inverse\:f(x)=x^{4}+3
|
inverse of f(x)=x^2+100
|
inverse\:f(x)=x^{2}+100
|
slope of m=-3/2
|
slope\:m=-\frac{3}{2}
|
shift f(x)=-cos(x-pi)+1
|
shift\:f(x)=-\cos(x-\pi)+1
|
range of-2-tan(x+(pi)/4)
|
range\:-2-\tan(x+\frac{\pi}{4})
|
domain of f(x)=(sqrt(3x-13))/(2x)
|
domain\:f(x)=\frac{\sqrt{3x-13}}{2x}
|
inverse of f(x)=(3x+4)/(2x-5)
|
inverse\:f(x)=\frac{3x+4}{2x-5}
|
slope of 3(y-1)=2x+2
|
slope\:3(y-1)=2x+2
|
asymptotes of f(x)=(x^2-5x)/(x^2-9)
|
asymptotes\:f(x)=\frac{x^{2}-5x}{x^{2}-9}
|
intercepts of f(x)=x^2-6x+9
|
intercepts\:f(x)=x^{2}-6x+9
|
extreme points of f(x)=x^{4/5}(x+3)
|
extreme\:points\:f(x)=x^{\frac{4}{5}}(x+3)
|
domain of f(x)=(7x-3)/(3x^2+3)
|
domain\:f(x)=\frac{7x-3}{3x^{2}+3}
|
slope of y=0
|
slope\:y=0
|