critical points of f(x)=x^3\div (x+1)
|
critical\:points\:f(x)=x^{3}\div\:(x+1)
|
domain of f(x)=x-2-3x^2
|
domain\:f(x)=x-2-3x^{2}
|
range of f(x)=((x^2+4x-5))/((x^2+x-2))
|
range\:f(x)=\frac{(x^{2}+4x-5)}{(x^{2}+x-2)}
|
domain of-x^2+4x
|
domain\:-x^{2}+4x
|
inverse of f(x)=(7-5x)/(5x+2)
|
inverse\:f(x)=\frac{7-5x}{5x+2}
|
range of f(x)=(5x+2)/(x-3)
|
range\:f(x)=\frac{5x+2}{x-3}
|
extreme points of f(x)=9.46
|
extreme\:points\:f(x)=9.46
|
inverse of g(x)=x^2+6x+7
|
inverse\:g(x)=x^{2}+6x+7
|
inverse of f(x)=\sqrt[3]{x/8}-6
|
inverse\:f(x)=\sqrt[3]{\frac{x}{8}}-6
|
slope of y=-3/4
|
slope\:y=-\frac{3}{4}
|
midpoint (-9,-1)(-3,7)
|
midpoint\:(-9,-1)(-3,7)
|
symmetry y=x^2+x
|
symmetry\:y=x^{2}+x
|
midpoint (3,8)(10,4)
|
midpoint\:(3,8)(10,4)
|
domain of f(x)= 8/(x-1)
|
domain\:f(x)=\frac{8}{x-1}
|
domain of f(x)=(x^2-4)/(x-2)
|
domain\:f(x)=\frac{x^{2}-4}{x-2}
|
domain of ln(3-x)+1/(x^2-4)
|
domain\:\ln(3-x)+\frac{1}{x^{2}-4}
|
inverse of f(x)=log_{1/2}(x/4)
|
inverse\:f(x)=\log_{\frac{1}{2}}(\frac{x}{4})
|
range of sqrt(x-2)
|
range\:\sqrt{x-2}
|
inverse of-2cos(3x)
|
inverse\:-2\cos(3x)
|
inverse of f(x)=2x^2-8x+3
|
inverse\:f(x)=2x^{2}-8x+3
|
domain of 9/x
|
domain\:\frac{9}{x}
|
inverse of f(x)=2x^2-4x
|
inverse\:f(x)=2x^{2}-4x
|
midpoint (-15,-2)(-6,-4)
|
midpoint\:(-15,-2)(-6,-4)
|
extreme points of f(x)=1+5x+x^2
|
extreme\:points\:f(x)=1+5x+x^{2}
|
intercepts of f(x)=x+3y=6
|
intercepts\:f(x)=x+3y=6
|
midpoint (3,9)(14,9)
|
midpoint\:(3,9)(14,9)
|
domain of f(x)=2x^2+9
|
domain\:f(x)=2x^{2}+9
|
domain of-ln((1-x)/x)
|
domain\:-\ln(\frac{1-x}{x})
|
range of sqrt(x^2-5)
|
range\:\sqrt{x^{2}-5}
|
inverse of f(x)=7sin(5x+4)
|
inverse\:f(x)=7\sin(5x+4)
|
asymptotes of y=(2x^2)/(x^2-1)
|
asymptotes\:y=\frac{2x^{2}}{x^{2}-1}
|
inverse of f(x)=((-9-7x)/3)
|
inverse\:f(x)=(\frac{-9-7x}{3})
|
inverse of f(x)=8x-12
|
inverse\:f(x)=8x-12
|
intercepts of x^4-6x^2-8
|
intercepts\:x^{4}-6x^{2}-8
|
tan
|
\tan
|
intercepts of f(x)=(6x-6)/(x+2)
|
intercepts\:f(x)=\frac{6x-6}{x+2}
|
intercepts of f(x)=x^2-4x+2
|
intercepts\:f(x)=x^{2}-4x+2
|
line (-7,4),(5,10)
|
line\:(-7,4),(5,10)
|
range of f(x)=-2x^2
|
range\:f(x)=-2x^{2}
|
periodicity of 2sin(4x-pi)
|
periodicity\:2\sin(4x-\pi)
|
asymptotes of f(x)=(x^2+x-12)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}+x-12}{x-3}
|
perpendicular y= 2/3 x-3,\at (6,-1)
|
perpendicular\:y=\frac{2}{3}x-3,\at\:(6,-1)
|
domain of f(x)=5tan(5x)
|
domain\:f(x)=5\tan(5x)
|
inverse of f(x)=e^{2x-8}
|
inverse\:f(x)=e^{2x-8}
|
parity x^3-x^7
|
parity\:x^{3}-x^{7}
|
asymptotes of f(x)=(-5)/(x+3)
|
asymptotes\:f(x)=\frac{-5}{x+3}
|
line 2x+5y=-19
|
line\:2x+5y=-19
|
domain of f(x)=8x+3
|
domain\:f(x)=8x+3
|
range of f(x)=1-sqrt(x)
|
range\:f(x)=1-\sqrt{x}
|
domain of f(x)=(x^2)/(sqrt(5-x))
|
domain\:f(x)=\frac{x^{2}}{\sqrt{5-x}}
|
midpoint (4,5)(6,7)
|
midpoint\:(4,5)(6,7)
|
domain of ln(1+(x+1)/(x+4))
|
domain\:\ln(1+\frac{x+1}{x+4})
|
critical points of f(x)=x^3-11x^2+39x-47
|
critical\:points\:f(x)=x^{3}-11x^{2}+39x-47
|
parity f(x)=x^3-3y=12
|
parity\:f(x)=x^{3}-3y=12
|
inverse of f(x)=2.5x+15.5
|
inverse\:f(x)=2.5x+15.5
|
y=x^2-8x+12
|
y=x^{2}-8x+12
|
critical points of x-5x^{1/5}
|
critical\:points\:x-5x^{\frac{1}{5}}
|
domain of f(x)=log_{8}(x)
|
domain\:f(x)=\log_{8}(x)
|
intercepts of f(x)=x+1
|
intercepts\:f(x)=x+1
|
extreme points of f(x)=-x^2-8x-5
|
extreme\:points\:f(x)=-x^{2}-8x-5
|
slope of y=6x+4
|
slope\:y=6x+4
|
parallel y=-3x
|
parallel\:y=-3x
|
asymptotes of f(x)=((x+3))/((-x-2))
|
asymptotes\:f(x)=\frac{(x+3)}{(-x-2)}
|
periodicity of f(x)=2sin(3x-pi)
|
periodicity\:f(x)=2\sin(3x-\pi)
|
slope of y=8x-4
|
slope\:y=8x-4
|
extreme points of y=-x^2+27x-54
|
extreme\:points\:y=-x^{2}+27x-54
|
extreme points of f(x)=x^2-x+3
|
extreme\:points\:f(x)=x^{2}-x+3
|
domain of f(x)=5x-4
|
domain\:f(x)=5x-4
|
slope intercept of 4x+3y=12
|
slope\:intercept\:4x+3y=12
|
domain of f(x)= 2/3 x^2
|
domain\:f(x)=\frac{2}{3}x^{2}
|
slope of y+1=3(x-4)
|
slope\:y+1=3(x-4)
|
range of (x+6)^2
|
range\:(x+6)^{2}
|
domain of f(x)= 1/(5x)+1
|
domain\:f(x)=\frac{1}{5x}+1
|
slope of-2x-7y=-13
|
slope\:-2x-7y=-13
|
critical points of ln(x-2)
|
critical\:points\:\ln(x-2)
|
asymptotes of f(x)=(2x-1)/(2-x)
|
asymptotes\:f(x)=\frac{2x-1}{2-x}
|
domain of f(x)=(3x+5)/(9x)
|
domain\:f(x)=\frac{3x+5}{9x}
|
inverse of f(x)=(2x-4)/(x-6)
|
inverse\:f(x)=\frac{2x-4}{x-6}
|
slope of 15=-3y+21x
|
slope\:15=-3y+21x
|
extreme points of f(x)=-7+6x-x^3
|
extreme\:points\:f(x)=-7+6x-x^{3}
|
domain of f(x)=6(x/2)-5
|
domain\:f(x)=6(\frac{x}{2})-5
|
domain of 3^x
|
domain\:3^{x}
|
asymptotes of f(x)=(8x+36)/(10x-5)
|
asymptotes\:f(x)=\frac{8x+36}{10x-5}
|
domain of log_{2}(x+5)+1
|
domain\:\log_{2}(x+5)+1
|
range of f(x)=sqrt(6-2x)
|
range\:f(x)=\sqrt{6-2x}
|
symmetry (2x)/(x^2+4)
|
symmetry\:\frac{2x}{x^{2}+4}
|
domain of f(x)=(x-10)^2
|
domain\:f(x)=(x-10)^{2}
|
intercepts of f(x)=y^2-2-y
|
intercepts\:f(x)=y^{2}-2-y
|
asymptotes of f(x)=(x-1)/((2x+1)(x-5))
|
asymptotes\:f(x)=\frac{x-1}{(2x+1)(x-5)}
|
slope of-2/3
|
slope\:-\frac{2}{3}
|
domain of f(x)= x/(x^{2-5)}
|
domain\:f(x)=\frac{x}{x^{2-5}}
|
critical points of f(x)=x^3+15x^2
|
critical\:points\:f(x)=x^{3}+15x^{2}
|
intercepts of f(x)=3x+4y+2z=24
|
intercepts\:f(x)=3x+4y+2z=24
|
intercepts of f(x)=4x^2+8x
|
intercepts\:f(x)=4x^{2}+8x
|
intercepts of log_{8}(x)
|
intercepts\:\log_{8}(x)
|
monotone intervals f(x)=x^2e^{-x}
|
monotone\:intervals\:f(x)=x^{2}e^{-x}
|
inverse of sqrt(x-4)^2+4
|
inverse\:\sqrt{x-4}^{2}+4
|
domain of (dy)/y
|
domain\:\frac{dy}{y}
|
inverse of f(x)=x-12
|
inverse\:f(x)=x-12
|
inverse of f(x)= 1/2 ln(2x-1)
|
inverse\:f(x)=\frac{1}{2}\ln(2x-1)
|