midpoint (-1,2)(-9,4)
|
midpoint\:(-1,2)(-9,4)
|
asymptotes of f(x)= x/(x^2-16)
|
asymptotes\:f(x)=\frac{x}{x^{2}-16}
|
parity f(x)= 7/(x^8+5x+1)
|
parity\:f(x)=\frac{7}{x^{8}+5x+1}
|
line (10,-1),(-4,-5)
|
line\:(10,-1),(-4,-5)
|
asymptotes of f(x)= 1/((x-7)^2)
|
asymptotes\:f(x)=\frac{1}{(x-7)^{2}}
|
intercepts of f(x)=x^2+x-2
|
intercepts\:f(x)=x^{2}+x-2
|
domain of f(x)=(x+6)/(x^2-16)
|
domain\:f(x)=\frac{x+6}{x^{2}-16}
|
domain of-sqrt(2-x)
|
domain\:-\sqrt{2-x}
|
slope intercept of 3x-y=-11
|
slope\:intercept\:3x-y=-11
|
midpoint (-1,6)(-4,10)
|
midpoint\:(-1,6)(-4,10)
|
domain of f(x)=x^2-7
|
domain\:f(x)=x^{2}-7
|
inflection points of f(x)=sqrt(2-x^2)
|
inflection\:points\:f(x)=\sqrt{2-x^{2}}
|
midpoint (4,-3)(0,1)
|
midpoint\:(4,-3)(0,1)
|
critical points of x^2
|
critical\:points\:x^{2}
|
intercepts of f(x)=(2x-1)(4x-1)
|
intercepts\:f(x)=(2x-1)(4x-1)
|
asymptotes of (5x)/(x^2-4)
|
asymptotes\:\frac{5x}{x^{2}-4}
|
critical points of 4x^3+7x^2-20x
|
critical\:points\:4x^{3}+7x^{2}-20x
|
extreme points of f(x)=x^2+2x-1
|
extreme\:points\:f(x)=x^{2}+2x-1
|
range of (x+8)/3
|
range\:\frac{x+8}{3}
|
parity y=e^{csc(6x)tan(6x)}
|
parity\:y=e^{\csc(6x)\tan(6x)}
|
domain of ((x+3)(x-3))/(x^2+9)
|
domain\:\frac{(x+3)(x-3)}{x^{2}+9}
|
inverse of f(x)=-1/2 sqrt(x+3)x>=-3
|
inverse\:f(x)=-\frac{1}{2}\sqrt{x+3}x\ge\:-3
|
slope intercept of-4/6 ,(0,-4)
|
slope\:intercept\:-\frac{4}{6},(0,-4)
|
symmetry-2x^2+2x-4
|
symmetry\:-2x^{2}+2x-4
|
intercepts of 1.4x^2+2x+1
|
intercepts\:1.4x^{2}+2x+1
|
inverse of f(x)=(1/2)sqrt(x-7)
|
inverse\:f(x)=(\frac{1}{2})\sqrt{x-7}
|
domain of f(x)= 6/(4/x-1)
|
domain\:f(x)=\frac{6}{\frac{4}{x}-1}
|
domain of f(x)=(ln(x^2-4))/(2x^2+x-15)
|
domain\:f(x)=\frac{\ln(x^{2}-4)}{2x^{2}+x-15}
|
line (-1,-2)(2,4)
|
line\:(-1,-2)(2,4)
|
domain of (x+3)^3-1
|
domain\:(x+3)^{3}-1
|
shift cos(x/4+(pi)/4)-2
|
shift\:\cos(\frac{x}{4}+\frac{\pi}{4})-2
|
parity f(x)=(x-3)sqrt(x)
|
parity\:f(x)=(x-3)\sqrt{x}
|
intercepts of f(x)=2x^2+3x-4
|
intercepts\:f(x)=2x^{2}+3x-4
|
domain of f(x)=1-|x|
|
domain\:f(x)=1-|x|
|
y=-x-3
|
y=-x-3
|
y=x^3+3x^2+3x+1
|
y=x^{3}+3x^{2}+3x+1
|
monotone intervals f(x)=(6x-2)/(x+6)
|
monotone\:intervals\:f(x)=\frac{6x-2}{x+6}
|
slope intercept of y=-2x+9
|
slope\:intercept\:y=-2x+9
|
inverse of csc^2(x)
|
inverse\:\csc^{2}(x)
|
critical points of f(x)=((x-1))/((x+3))
|
critical\:points\:f(x)=\frac{(x-1)}{(x+3)}
|
inverse of f(x)=\sqrt[3]{-4x+1}
|
inverse\:f(x)=\sqrt[3]{-4x+1}
|
slope of 4x-7y=10
|
slope\:4x-7y=10
|
slope intercept of x+3y=15
|
slope\:intercept\:x+3y=15
|
symmetry y=x^2-x-72
|
symmetry\:y=x^{2}-x-72
|
asymptotes of y=(x+4)/(x^2+5x+4)
|
asymptotes\:y=\frac{x+4}{x^{2}+5x+4}
|
domain of y=25x
|
domain\:y=25x
|
distance (3,2)(-1,-1)
|
distance\:(3,2)(-1,-1)
|
asymptotes of (x-6)/(x+6)
|
asymptotes\:\frac{x-6}{x+6}
|
inverse of 1/x+5
|
inverse\:\frac{1}{x}+5
|
extreme points of (x+1)^{4/5}
|
extreme\:points\:(x+1)^{\frac{4}{5}}
|
inverse of f(x)=x^2+4x-1
|
inverse\:f(x)=x^{2}+4x-1
|
domain of f(x)=(2x^2-x-7)/(x^2+4)
|
domain\:f(x)=\frac{2x^{2}-x-7}{x^{2}+4}
|
midpoint (1,9)(7,-7)
|
midpoint\:(1,9)(7,-7)
|
distance (4,2)(-6,-6)
|
distance\:(4,2)(-6,-6)
|
monotone intervals f(x)=-5sqrt(x-6)
|
monotone\:intervals\:f(x)=-5\sqrt{x-6}
|
domain of x^3+3x^2+2x+1
|
domain\:x^{3}+3x^{2}+2x+1
|
domain of f(x)=(x^2+x-2)/(x^2-3x-4)
|
domain\:f(x)=\frac{x^{2}+x-2}{x^{2}-3x-4}
|
range of (x-1)/((x-2)(x+4))
|
range\:\frac{x-1}{(x-2)(x+4)}
|
asymptotes of f(x)=(-2)/(x-2)
|
asymptotes\:f(x)=\frac{-2}{x-2}
|
inverse of f(x)=(x-6)/6
|
inverse\:f(x)=\frac{x-6}{6}
|
inverse of f(x)=-4x-5
|
inverse\:f(x)=-4x-5
|
intercepts of 5^x+3
|
intercepts\:5^{x}+3
|
inflection points of xe^{(-x^2)/2}
|
inflection\:points\:xe^{\frac{-x^{2}}{2}}
|
range of f(x)=1-(x-4)^2
|
range\:f(x)=1-(x-4)^{2}
|
domain of sqrt(x)-2
|
domain\:\sqrt{x}-2
|
slope intercept of 0.8x-0.6x=14
|
slope\:intercept\:0.8x-0.6x=14
|
line m=5,\at (0,2)
|
line\:m=5,\at\:(0,2)
|
inverse of f(x)=(5x-10)/5+2
|
inverse\:f(x)=\frac{5x-10}{5}+2
|
domain of f(x)=sqrt(-x+7)
|
domain\:f(x)=\sqrt{-x+7}
|
inverse of sqrt(-4x^2+12)
|
inverse\:\sqrt{-4x^{2}+12}
|
periodicity of tan(x+(pi)/4)
|
periodicity\:\tan(x+\frac{\pi}{4})
|
domain of f(x)=(x+9)/(x^2-81)
|
domain\:f(x)=\frac{x+9}{x^{2}-81}
|
line (-8,8)(1,-10)
|
line\:(-8,8)(1,-10)
|
domain of 4/x+6
|
domain\:\frac{4}{x}+6
|
domain of f(x)=(sqrt(4+x))/(8-x)
|
domain\:f(x)=\frac{\sqrt{4+x}}{8-x}
|
range of x^2+2x-3
|
range\:x^{2}+2x-3
|
range of f(x)= 4/(x^2-2x)
|
range\:f(x)=\frac{4}{x^{2}-2x}
|
inverse of f(x)=18500(0.49-x^2)
|
inverse\:f(x)=18500(0.49-x^{2})
|
distance (15,-17)(-20,-5)
|
distance\:(15,-17)(-20,-5)
|
distance (0,7)(-2,-1)
|
distance\:(0,7)(-2,-1)
|
monotone intervals f(x)=((x-2)^2)/(x-1)
|
monotone\:intervals\:f(x)=\frac{(x-2)^{2}}{x-1}
|
inverse of y= 4/(x+7)
|
inverse\:y=\frac{4}{x+7}
|
inverse of f(x)=(-5x-1)/(4x-4)
|
inverse\:f(x)=\frac{-5x-1}{4x-4}
|
inflection points of x^4
|
inflection\:points\:x^{4}
|
domain of f(x)= 5/(x^2-4)
|
domain\:f(x)=\frac{5}{x^{2}-4}
|
distance (-2,-4)(3,-2)
|
distance\:(-2,-4)(3,-2)
|
domain of (x-8)/x
|
domain\:\frac{x-8}{x}
|
asymptotes of f(x)=(x^3-4x)/(x^2+x)
|
asymptotes\:f(x)=\frac{x^{3}-4x}{x^{2}+x}
|
domain of 1/4*2^x-7
|
domain\:\frac{1}{4}\cdot\:2^{x}-7
|
domain of y=sqrt(-x)
|
domain\:y=\sqrt{-x}
|
domain of sqrt((x-1)/(x+3))
|
domain\:\sqrt{\frac{x-1}{x+3}}
|
inverse of f(x)=(100)/(x^2)
|
inverse\:f(x)=\frac{100}{x^{2}}
|
inverse of f(x)=(x/3+6/3)^{1/3}
|
inverse\:f(x)=(\frac{x}{3}+\frac{6}{3})^{\frac{1}{3}}
|
parity f(x)= 1/(9x^3)
|
parity\:f(x)=\frac{1}{9x^{3}}
|
inverse of f(x)= 5/2
|
inverse\:f(x)=\frac{5}{2}
|
inverse of y=5x^2
|
inverse\:y=5x^{2}
|
monotone intervals f(x)=x^{6/7}-x^{13/7}
|
monotone\:intervals\:f(x)=x^{\frac{6}{7}}-x^{\frac{13}{7}}
|
domain of f(x)=sqrt(25-x^2)*sqrt(x+2)
|
domain\:f(x)=\sqrt{25-x^{2}}\cdot\:\sqrt{x+2}
|
midpoint (3,4),(0,5)
|
midpoint\:(3,4),(0,5)
|
inverse of f(x)= 5/(x-6)
|
inverse\:f(x)=\frac{5}{x-6}
|