inverse of f(x)=cos((pi)/4-x)
|
inverse\:f(x)=\cos(\frac{\pi}{4}-x)
|
inverse of f(x)= x/(1-x^2)
|
inverse\:f(x)=\frac{x}{1-x^{2}}
|
inverse of f(x)= 7/10 x
|
inverse\:f(x)=\frac{7}{10}x
|
domain of (sqrt(x+11))/(15)
|
domain\:\frac{\sqrt{x+11}}{15}
|
domain of f(x)=3x-5\div sqrt(x^2-2x-8)
|
domain\:f(x)=3x-5\div\:\sqrt{x^{2}-2x-8}
|
domain of ((x^2+3x-4))/(x+4)
|
domain\:\frac{(x^{2}+3x-4)}{x+4}
|
inverse of f(x)=sqrt(x-2)-2.6
|
inverse\:f(x)=\sqrt{x-2}-2.6
|
inverse of 1/(2x^3)
|
inverse\:\frac{1}{2x^{3}}
|
parity f(x)= 3/4 sqrt(x+12)
|
parity\:f(x)=\frac{3}{4}\sqrt{x+12}
|
asymptotes of f(x)= x/(1-x)
|
asymptotes\:f(x)=\frac{x}{1-x}
|
domain of f(x)=-3/(2t^{3/2)}
|
domain\:f(x)=-\frac{3}{2t^{\frac{3}{2}}}
|
parallel-2x-5,\at (-2,-3)
|
parallel\:-2x-5,\at\:(-2,-3)
|
line (10,10)(5,7)
|
line\:(10,10)(5,7)
|
domain of f(x)=x^2+7
|
domain\:f(x)=x^{2}+7
|
domain of f(x)=-9/(2x^{3/2)}
|
domain\:f(x)=-\frac{9}{2x^{\frac{3}{2}}}
|
midpoint (-1,4)(5,2)
|
midpoint\:(-1,4)(5,2)
|
symmetry 12x^4+4y^4=34
|
symmetry\:12x^{4}+4y^{4}=34
|
range of 3-|x+2|
|
range\:3-|x+2|
|
inverse of f(x)=x^2-3/4
|
inverse\:f(x)=x^{2}-\frac{3}{4}
|
slope of y=x-3
|
slope\:y=x-3
|
critical points of f(x)=(x^3-8)^4
|
critical\:points\:f(x)=(x^{3}-8)^{4}
|
periodicity of f(x)=5sin(1/2 x)
|
periodicity\:f(x)=5\sin(\frac{1}{2}x)
|
range of 12x^3-35
|
range\:12x^{3}-35
|
periodicity of f(x)=tan(1/2 x+pi)
|
periodicity\:f(x)=\tan(\frac{1}{2}x+\pi)
|
line (6,-1),(-24,19)
|
line\:(6,-1),(-24,19)
|
domain of y=sqrt(x-6)
|
domain\:y=\sqrt{x-6}
|
domain of ((x+3))/(x+4)
|
domain\:\frac{(x+3)}{x+4}
|
domain of sqrt(x)\div x/(x-2)
|
domain\:\sqrt{x}\div\:\frac{x}{x-2}
|
slope intercept of 35x-5y=-350
|
slope\:intercept\:35x-5y=-350
|
domain of f(x)=1-2x
|
domain\:f(x)=1-2x
|
intercepts of (2x-9)/(-4x+1)
|
intercepts\:\frac{2x-9}{-4x+1}
|
range of 1/10 (x+6)^2+4
|
range\:\frac{1}{10}(x+6)^{2}+4
|
parity 6sec(6x)tan(6x)dx
|
parity\:6\sec(6x)\tan(6x)dx
|
symmetry x^2-4x+8
|
symmetry\:x^{2}-4x+8
|
range of (5x)/(2x+3)
|
range\:\frac{5x}{2x+3}
|
line y=(-x)/6
|
line\:y=\frac{-x}{6}
|
domain of f(x)= 1/(4x^2-4x-3)
|
domain\:f(x)=\frac{1}{4x^{2}-4x-3}
|
midpoint (3,0)(1,-10)
|
midpoint\:(3,0)(1,-10)
|
line (2,9),(21,18)
|
line\:(2,9),(21,18)
|
inverse of f(x)= 1/5 x^2
|
inverse\:f(x)=\frac{1}{5}x^{2}
|
inflection points of (2-x)e^x
|
inflection\:points\:(2-x)e^{x}
|
extreme points of f(x)=x^2+6x+3
|
extreme\:points\:f(x)=x^{2}+6x+3
|
range of sqrt(x+4)+sqrt(5-x)
|
range\:\sqrt{x+4}+\sqrt{5-x}
|
asymptotes of f(x)= 6/(x-2)
|
asymptotes\:f(x)=\frac{6}{x-2}
|
inverse of f(x)=3^{x+5}-1
|
inverse\:f(x)=3^{x+5}-1
|
domain of f(x)=(2x)/(x^2-9)
|
domain\:f(x)=\frac{2x}{x^{2}-9}
|
intercepts of f(x)=(x+4)^2+1
|
intercepts\:f(x)=(x+4)^{2}+1
|
slope of f(8)=1f(10)=-2
|
slope\:f(8)=1f(10)=-2
|
line (8,7)(10,16)
|
line\:(8,7)(10,16)
|
inverse of f(x)=6x^2+2
|
inverse\:f(x)=6x^{2}+2
|
inverse of y=-4
|
inverse\:y=-4
|
inflection points of x^3-3x^2-45x+5
|
inflection\:points\:x^{3}-3x^{2}-45x+5
|
inverse of f(x)=(x-6)/(10)
|
inverse\:f(x)=\frac{x-6}{10}
|
asymptotes of (2x^2)/(x^2+2x-8)
|
asymptotes\:\frac{2x^{2}}{x^{2}+2x-8}
|
inverse of f(x)=sin(5x-3)
|
inverse\:f(x)=\sin(5x-3)
|
domain of y=x^2-2x-3
|
domain\:y=x^{2}-2x-3
|
inverse of x/4+1
|
inverse\:\frac{x}{4}+1
|
range of f(x)=2-sqrt(x+4)
|
range\:f(x)=2-\sqrt{x+4}
|
critical points of f(x)=4xe^{5x}
|
critical\:points\:f(x)=4xe^{5x}
|
inflection points of ln(x-5)
|
inflection\:points\:\ln(x-5)
|
domain of f(x)=(x^2+x)/(-3x+3)
|
domain\:f(x)=\frac{x^{2}+x}{-3x+3}
|
extreme points of f(x)=-2x^2+8x-7
|
extreme\:points\:f(x)=-2x^{2}+8x-7
|
periodicity of f(x)=-3tan(pi x)
|
periodicity\:f(x)=-3\tan(\pi\:x)
|
critical points of-x^3-9x^2+14x+24
|
critical\:points\:-x^{3}-9x^{2}+14x+24
|
domain of f(x)=(x^2-4x-12)/(x+1)
|
domain\:f(x)=\frac{x^{2}-4x-12}{x+1}
|
slope of y=3x,\at (5,35)
|
slope\:y=3x,\at\:(5,35)
|
asymptotes of f(x)=(18x^2)/(9x^2+5)
|
asymptotes\:f(x)=\frac{18x^{2}}{9x^{2}+5}
|
domain of sqrt(1+x^2)
|
domain\:\sqrt{1+x^{2}}
|
extreme points of-x^3+9x^2-27x+8
|
extreme\:points\:-x^{3}+9x^{2}-27x+8
|
domain of 1/(sqrt(t))
|
domain\:\frac{1}{\sqrt{t}}
|
parity (1+sin(x))/(x+cos(x))
|
parity\:\frac{1+\sin(x)}{x+\cos(x)}
|
inverse of f(x)=\sqrt[3]{x+8}-6
|
inverse\:f(x)=\sqrt[3]{x+8}-6
|
inverse of f(x)=(x+3)^2-8
|
inverse\:f(x)=(x+3)^{2}-8
|
extreme points of f(x)=x^2+12x+40
|
extreme\:points\:f(x)=x^{2}+12x+40
|
domain of f(x)=(log_{2}(x))+8
|
domain\:f(x)=(\log_{2}(x))+8
|
domain of f(x)=2*3^x
|
domain\:f(x)=2\cdot\:3^{x}
|
midpoint (-4,8)(-2,10)
|
midpoint\:(-4,8)(-2,10)
|
asymptotes of f(x)=(4x^2+x-9)/(x^2+x-56)
|
asymptotes\:f(x)=\frac{4x^{2}+x-9}{x^{2}+x-56}
|
intercepts of f(x)=2x-6
|
intercepts\:f(x)=2x-6
|
extreme points of 1/(x-1)
|
extreme\:points\:\frac{1}{x-1}
|
extreme points of (x^2+6)^{2/5}
|
extreme\:points\:(x^{2}+6)^{\frac{2}{5}}
|
domain of f(x)=(x^2)/(x^2+4)
|
domain\:f(x)=\frac{x^{2}}{x^{2}+4}
|
inverse of cos(3theta)
|
inverse\:\cos(3\theta)
|
slope intercept of-8x-y+57=0
|
slope\:intercept\:-8x-y+57=0
|
symmetry x^2+16x+61
|
symmetry\:x^{2}+16x+61
|
inverse of (1-2x)/(x+1)
|
inverse\:\frac{1-2x}{x+1}
|
domain of f(x)=-sqrt(25-x^2)
|
domain\:f(x)=-\sqrt{25-x^{2}}
|
domain of 1-x-x^2
|
domain\:1-x-x^{2}
|
parity f(x)=x^4-2x^2+4
|
parity\:f(x)=x^{4}-2x^{2}+4
|
inverse of f(x)=-2x+100
|
inverse\:f(x)=-2x+100
|
domain of f(x)=sqrt(2t+6)
|
domain\:f(x)=\sqrt{2t+6}
|
domain of x^2-5x
|
domain\:x^{2}-5x
|
inverse of f(x)=ln(5t)
|
inverse\:f(x)=\ln(5t)
|
domain of f(x)=(2x)/(x^2-25)
|
domain\:f(x)=\frac{2x}{x^{2}-25}
|
intercepts of f(x)=((5x+2))/x
|
intercepts\:f(x)=\frac{(5x+2)}{x}
|
domain of f(x)=(12x+35)/(x^2+7x)
|
domain\:f(x)=\frac{12x+35}{x^{2}+7x}
|
asymptotes of (4/10)^x
|
asymptotes\:(\frac{4}{10})^{x}
|
critical points of f(x)=2x^3-96x+42
|
critical\:points\:f(x)=2x^{3}-96x+42
|
asymptotes of f(x)=((x+2))/(x^2+4x-5)
|
asymptotes\:f(x)=\frac{(x+2)}{x^{2}+4x-5}
|
domain of y=e^{x+1}
|
domain\:y=e^{x+1}
|