midpoint (3,1)(4,7)
|
midpoint\:(3,1)(4,7)
|
inverse of f(x)=2^x+6
|
inverse\:f(x)=2^{x}+6
|
range of f(x)= 1/((1-x)^2)
|
range\:f(x)=\frac{1}{(1-x)^{2}}
|
inverse of f(x)=(x+1)/2
|
inverse\:f(x)=\frac{x+1}{2}
|
asymptotes of f(x)= 1/(x+9)
|
asymptotes\:f(x)=\frac{1}{x+9}
|
symmetry-2x^2+4x-3
|
symmetry\:-2x^{2}+4x-3
|
domain of 1+sqrt(x-1)
|
domain\:1+\sqrt{x-1}
|
asymptotes of f(x)=(6e^x)/(e^x-7)
|
asymptotes\:f(x)=\frac{6e^{x}}{e^{x}-7}
|
intercepts of f(x)=-(x+5)^2+6
|
intercepts\:f(x)=-(x+5)^{2}+6
|
asymptotes of 3^x-5
|
asymptotes\:3^{x}-5
|
critical points of e^{2x}-e^{-x}
|
critical\:points\:e^{2x}-e^{-x}
|
domain of f(x)=-((x-4)/2)
|
domain\:f(x)=-(\frac{x-4}{2})
|
intercepts of f(x)=4x^2-8x+1
|
intercepts\:f(x)=4x^{2}-8x+1
|
inverse of y=2x^4-5
|
inverse\:y=2x^{4}-5
|
domain of f(x)=sqrt(|x^3-x|)
|
domain\:f(x)=\sqrt{|x^{3}-x|}
|
asymptotes of f(x)= 8/(x+2)
|
asymptotes\:f(x)=\frac{8}{x+2}
|
range of-sqrt(x+5)-3
|
range\:-\sqrt{x+5}-3
|
domain of sqrt(3-x)
|
domain\:\sqrt{3-x}
|
inverse of (x-1)^7
|
inverse\:(x-1)^{7}
|
slope of 2x-4y=20
|
slope\:2x-4y=20
|
inverse of-6+ln(x)
|
inverse\:-6+\ln(x)
|
domain of y=sqrt(x^2+3)
|
domain\:y=\sqrt{x^{2}+3}
|
range of-5cos(6x)
|
range\:-5\cos(6x)
|
line (0,0),(4.6729,16.617)
|
line\:(0,0),(4.6729,16.617)
|
critical points of f(x)=2x^3-12x^2-30x+9
|
critical\:points\:f(x)=2x^{3}-12x^{2}-30x+9
|
critical points of-12x^2-18x
|
critical\:points\:-12x^{2}-18x
|
parity f(x)=x^3+x^2
|
parity\:f(x)=x^{3}+x^{2}
|
inverse of f(x)=-1/3 x
|
inverse\:f(x)=-\frac{1}{3}x
|
slope of (1,r)(5-11)
|
slope\:(1,r)(5-11)
|
inflection points of f(x)=(x^3)/(x^2-1)
|
inflection\:points\:f(x)=\frac{x^{3}}{x^{2}-1}
|
domain of (3x)/(x^2-1)
|
domain\:\frac{3x}{x^{2}-1}
|
domain of f(x)=(1-3x)/(4+x)
|
domain\:f(x)=\frac{1-3x}{4+x}
|
inverse of f(x)=8^x+13
|
inverse\:f(x)=8^{x}+13
|
asymptotes of f(x)=(x^4)/(x^2+3)
|
asymptotes\:f(x)=\frac{x^{4}}{x^{2}+3}
|
range of (x+3)/x
|
range\:\frac{x+3}{x}
|
inverse of f(x)=5
|
inverse\:f(x)=5
|
inverse of f(x)=-x+15
|
inverse\:f(x)=-x+15
|
domain of f(x)=10
|
domain\:f(x)=10
|
slope of y=3x-2
|
slope\:y=3x-2
|
domain of f(x)=(9(x+11))/(11x)
|
domain\:f(x)=\frac{9(x+11)}{11x}
|
monotone intervals f(x)= x/(x^2+6x+8)
|
monotone\:intervals\:f(x)=\frac{x}{x^{2}+6x+8}
|
symmetry x^2-x-6
|
symmetry\:x^{2}-x-6
|
f(x)= 2/(x-1)
|
f(x)=\frac{2}{x-1}
|
domain of x-sqrt(x)
|
domain\:x-\sqrt{x}
|
range of 10^{x-2}-5
|
range\:10^{x-2}-5
|
domain of (2x-1)/(x^3-4x)
|
domain\:\frac{2x-1}{x^{3}-4x}
|
asymptotes of f(x)= 7/(3+e^x)
|
asymptotes\:f(x)=\frac{7}{3+e^{x}}
|
monotone intervals f(x)=6x+4/x
|
monotone\:intervals\:f(x)=6x+\frac{4}{x}
|
slope of x+2y=-4
|
slope\:x+2y=-4
|
asymptotes of f(x)=(x^2)/(x-1)
|
asymptotes\:f(x)=\frac{x^{2}}{x-1}
|
line (0,4)(9,8)
|
line\:(0,4)(9,8)
|
perpendicular 3x+2y+3=0
|
perpendicular\:3x+2y+3=0
|
domain of (x-2)/(x+4)
|
domain\:\frac{x-2}{x+4}
|
domain of f(x)=-7x+7
|
domain\:f(x)=-7x+7
|
intercepts of f(x)=-5x+3
|
intercepts\:f(x)=-5x+3
|
domain of csc(((x*pi))/2)+1
|
domain\:\csc(\frac{(x\cdot\:\pi)}{2})+1
|
asymptotes of f(x)=(-5x-10)/(x^2+2x)
|
asymptotes\:f(x)=\frac{-5x-10}{x^{2}+2x}
|
symmetry (x-5)/(x^2-25)
|
symmetry\:\frac{x-5}{x^{2}-25}
|
inverse of f(x)=19-2x
|
inverse\:f(x)=19-2x
|
domain of f(x)=2x^2-5x+3
|
domain\:f(x)=2x^{2}-5x+3
|
domain of f(x)=x> 2
|
domain\:f(x)=x\gt\:2
|
line m=-1/2 ,\at (8,-12)
|
line\:m=-\frac{1}{2},\at\:(8,-12)
|
symmetry 3x^2+7x+5
|
symmetry\:3x^{2}+7x+5
|
inverse of f(x)=-(6^x)/3
|
inverse\:f(x)=-\frac{6^{x}}{3}
|
inverse of f(x)=sqrt(x+3)-6
|
inverse\:f(x)=\sqrt{x+3}-6
|
inverse of f(x)=7x+2
|
inverse\:f(x)=7x+2
|
y=x^2-2
|
y=x^{2}-2
|
distance (-6,4)(6,-3)
|
distance\:(-6,4)(6,-3)
|
inverse of f(x)=-x^2,x<= 0
|
inverse\:f(x)=-x^{2},x\le\:0
|
intercepts of f(x)=y=sqrt(x^2-16)
|
intercepts\:f(x)=y=\sqrt{x^{2}-16}
|
domain of 1/(sqrt(x^2-4x))
|
domain\:\frac{1}{\sqrt{x^{2}-4x}}
|
inverse of f(x)=2-e^{2x-1}
|
inverse\:f(x)=2-e^{2x-1}
|
inflection points of f(x)=2x^3+3x^2-36x
|
inflection\:points\:f(x)=2x^{3}+3x^{2}-36x
|
intercepts of f(x)=x+y=-1
|
intercepts\:f(x)=x+y=-1
|
inflection points of f(x)= x/(1+x^2)
|
inflection\:points\:f(x)=\frac{x}{1+x^{2}}
|
inverse of x^4+32x^2+256
|
inverse\:x^{4}+32x^{2}+256
|
critical points of f(x)=xsqrt(x+1)
|
critical\:points\:f(x)=x\sqrt{x+1}
|
extreme points of sqrt(1-(x-3)^2)
|
extreme\:points\:\sqrt{1-(x-3)^{2}}
|
domain of f(x)=sqrt(x^3-6x^2+8x)
|
domain\:f(x)=\sqrt{x^{3}-6x^{2}+8x}
|
extreme points of f(x)=x^3-12x+1
|
extreme\:points\:f(x)=x^{3}-12x+1
|
intercepts of (4x+9)/(3x-2)
|
intercepts\:\frac{4x+9}{3x-2}
|
slope intercept of x+2y=16
|
slope\:intercept\:x+2y=16
|
slope intercept of 6/5 x+3
|
slope\:intercept\:\frac{6}{5}x+3
|
domain of x^2-2x-35
|
domain\:x^{2}-2x-35
|
asymptotes of f(x)= 9/x+x+1
|
asymptotes\:f(x)=\frac{9}{x}+x+1
|
inverse of f(x)=-1313/2050 x+6963/5125
|
inverse\:f(x)=-\frac{1313}{2050}x+\frac{6963}{5125}
|
inverse of f(x)=5x+12
|
inverse\:f(x)=5x+12
|
domain of ln(x)+ln(7-x)
|
domain\:\ln(x)+\ln(7-x)
|
critical points of f(x)=3xsqrt(4x^2+4)
|
critical\:points\:f(x)=3x\sqrt{4x^{2}+4}
|
inverse of (3x-7)/5
|
inverse\:\frac{3x-7}{5}
|
extreme points of f(x)=-x^2-6x-6
|
extreme\:points\:f(x)=-x^{2}-6x-6
|
inverse of 1/(csc(x))
|
inverse\:\frac{1}{\csc(x)}
|
critical points of xe^{x^2}
|
critical\:points\:xe^{x^{2}}
|
inverse of 0.3^x
|
inverse\:0.3^{x}
|
domain of 27a^6
|
domain\:27a^{6}
|
inverse of f(x)=(sqrt(y+3))/4
|
inverse\:f(x)=\frac{\sqrt{y+3}}{4}
|
intercepts of f(x)=(x^2-25)(x^3+8)^3
|
intercepts\:f(x)=(x^{2}-25)(x^{3}+8)^{3}
|
monotone intervals f(x)=x(1-x)(1+x)
|
monotone\:intervals\:f(x)=x(1-x)(1+x)
|
extreme points of x^4-4x^3+8
|
extreme\:points\:x^{4}-4x^{3}+8
|
intercepts of f(x)=(x+2)/(2x+6)
|
intercepts\:f(x)=\frac{x+2}{2x+6}
|