Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
asymptotes of r(x)=(6x^3-2)/(2x^3+5x^2+6x)
asymptotes\:r(x)=\frac{6x^{3}-2}{2x^{3}+5x^{2}+6x}
distance (3,-2),(-4,5)
distance\:(3,-2),(-4,5)
range of f(x)=5x^2+9
range\:f(x)=5x^{2}+9
domain of f(x)=(sqrt(x-1))/(x-4)
domain\:f(x)=\frac{\sqrt{x-1}}{x-4}
inverse of f(x)= 1/2 e^{x+3}-4
inverse\:f(x)=\frac{1}{2}e^{x+3}-4
domain of f(x)=3x(x+3)(x-5)
domain\:f(x)=3x(x+3)(x-5)
periodicity of 2sin((2piθ)/3)
periodicity\:2\sin(\frac{2πθ}{3})
domain of f(x)=(sqrt(x^2-25))/(x-5)
domain\:f(x)=\frac{\sqrt{x^{2}-25}}{x-5}
inverse of 2+ln(x)
inverse\:2+\ln(x)
asymptotes of f(x)=(1+e^{-x})/(5e^x)
asymptotes\:f(x)=\frac{1+e^{-x}}{5e^{x}}
monotone (e^x-e^{-x})/2
monotone\:\frac{e^{x}-e^{-x}}{2}
inverse of f(x)= 3/x-1
inverse\:f(x)=\frac{3}{x}-1
intercepts of f(x)=7x-2y=14
intercepts\:f(x)=7x-2y=14
domain of f(t)=ln(t)
domain\:f(t)=\ln(t)
domain of 1-4x
domain\:1-4x
range of f(x)=(x^2+x-2)/(x^2-3x-4)
range\:f(x)=\frac{x^{2}+x-2}{x^{2}-3x-4}
inverse of f(x)=(x^4+3)/(x^4)
inverse\:f(x)=\frac{x^{4}+3}{x^{4}}
range of (3x)/(8x-3)
range\:\frac{3x}{8x-3}
slope ofintercept-5x-4y=-8
slopeintercept\:-5x-4y=-8
amplitude of sin(2.8x+0.9)+0.3
amplitude\:\sin(2.8x+0.9)+0.3
parity f(x)= 1/(x-2)
parity\:f(x)=\frac{1}{x-2}
slope of y=-3x
slope\:y=-3x
extreme f(x)=(x^3)/(x-3)
extreme\:f(x)=\frac{x^{3}}{x-3}
range of f(x)=(x+5)/4
range\:f(x)=\frac{x+5}{4}
inverse of 5x-2
inverse\:5x-2
intercepts of 2x+3
intercepts\:2x+3
inverse of g(x)=x+3
inverse\:g(x)=x+3
critical f(x)=3x^2-27
critical\:f(x)=3x^{2}-27
slope of y=3x+3
slope\:y=3x+3
line (-9,7),(-6,-3)
line\:(-9,7),(-6,-3)
domain of 5-(2-sqrt(x))^2
domain\:5-(2-\sqrt{x})^{2}
inverse of f(x)=128
inverse\:f(x)=128
range of f(x)=(2x-3)/(4x+1)
range\:f(x)=\frac{2x-3}{4x+1}
inverse of arcsin(x/2)
inverse\:\arcsin(\frac{x}{2})
asymptotes of f(x)=(3x)/(7x^2+14)
asymptotes\:f(x)=\frac{3x}{7x^{2}+14}
domain of 3x^2+x+5
domain\:3x^{2}+x+5
domain of f(x)=ln(x-1)
domain\:f(x)=\ln(x-1)
domain of f(x)= 6/(2-x)
domain\:f(x)=\frac{6}{2-x}
inverse of f(x)=((4x-1))/(2x+9)
inverse\:f(x)=\frac{(4x-1)}{2x+9}
asymptotes of f(x)=(x^2+3x-28)/(x^2-16)
asymptotes\:f(x)=\frac{x^{2}+3x-28}{x^{2}-16}
inverse of 5x^3-1
inverse\:5x^{3}-1
asymptotes of f(x)=5+log_{2}(x+5)
asymptotes\:f(x)=5+\log_{2}(x+5)
slope of 9x+3y=12
slope\:9x+3y=12
inverse of f(x)=(5x)/9
inverse\:f(x)=\frac{5x}{9}
intercepts of f(x)=\sqrt[3]{x}
intercepts\:f(x)=\sqrt[3]{x}
extreme x^2
extreme\:x^{2}
inverse of f(x)=sqrt(1/(x^2)-1)
inverse\:f(x)=\sqrt{\frac{1}{x^{2}}-1}
extreme f(x)=x^2+4/(x^2)
extreme\:f(x)=x^{2}+\frac{4}{x^{2}}
range of f(x)=-5^x
range\:f(x)=-5^{x}
perpendicular y=4x-4
perpendicular\:y=4x-4
midpoint (4,1),(-2,-3)
midpoint\:(4,1),(-2,-3)
extreme f(x)=-x^3+9x^2-2
extreme\:f(x)=-x^{3}+9x^{2}-2
intercepts of f(x)=x^2-10x+16
intercepts\:f(x)=x^{2}-10x+16
domain of f(x)=4x^2+x+5
domain\:f(x)=4x^{2}+x+5
asymptotes of f(x)=(x-4)/(3x-x^2)
asymptotes\:f(x)=\frac{x-4}{3x-x^{2}}
critical-1/t-1/9 t
critical\:-\frac{1}{t}-\frac{1}{9}t
domain of f(x)=sqrt(5-x)
domain\:f(x)=\sqrt{5-x}
symmetry (-2)/(x^2-2)
symmetry\:\frac{-2}{x^{2}-2}
inflection-x^4-8x^3+3x-2
inflection\:-x^{4}-8x^{3}+3x-2
intercepts of f(x)=-x^2-1
intercepts\:f(x)=-x^{2}-1
domain of g(x)=x^2-1
domain\:g(x)=x^{2}-1
extreme x^2+5x+6
extreme\:x^{2}+5x+6
slope of y=(-3)/4 x+6
slope\:y=\frac{-3}{4}x+6
inverse of f(x)=x^2+2x+7
inverse\:f(x)=x^{2}+2x+7
line (13,-45),(-8,39)
line\:(13,-45),(-8,39)
critical f(x)=x(1-x^2)
critical\:f(x)=x(1-x^{2})
intercepts of f(x)= 3/(x-1)
intercepts\:f(x)=\frac{3}{x-1}
inflection f(x)= 1/(3x^2+7)
inflection\:f(x)=\frac{1}{3x^{2}+7}
symmetry x^2+x+1
symmetry\:x^{2}+x+1
symmetry 4x=5y^2-3
symmetry\:4x=5y^{2}-3
domain of f(x)=(sqrt(2x+7))/(x-3)
domain\:f(x)=\frac{\sqrt{2x+7}}{x-3}
asymptotes of f(x)=(x+2)/(x^2+x-12)
asymptotes\:f(x)=\frac{x+2}{x^{2}+x-12}
extreme f(x)=sqrt(x)-4
extreme\:f(x)=\sqrt{x}-4
inverse of 3x
inverse\:3x
range of (x-3)/(x-2)
range\:\frac{x-3}{x-2}
parity f(x)=cx+ln(cos(x))
parity\:f(x)=cx+\ln(\cos(x))
inflection x^4+x^3-3x^2+1
inflection\:x^{4}+x^{3}-3x^{2}+1
critical f(x)=x^4-4x^3
critical\:f(x)=x^{4}-4x^{3}
inverse of f(x)=(x+4)^3
inverse\:f(x)=(x+4)^{3}
midpoint (3,-6),(5,8)
midpoint\:(3,-6),(5,8)
shift sec(x)
shift\:\sec(x)
asymptotes of (x^2)/(x^2-16)
asymptotes\:\frac{x^{2}}{x^{2}-16}
domain of y= 5/(sqrt(x))
domain\:y=\frac{5}{\sqrt{x}}
slope ofintercept 3x+y-8=0
slopeintercept\:3x+y-8=0
range of f(x)=sqrt(4x^2+20)
range\:f(x)=\sqrt{4x^{2}+20}
symmetry (2x)/(x^2-1)
symmetry\:\frac{2x}{x^{2}-1}
slope of 6x-3y=3
slope\:6x-3y=3
inverse of log_{2}(3x)
inverse\:\log_{2}(3x)
asymptotes of f(x)=(2x^2-7x-5)/(2x+3)
asymptotes\:f(x)=\frac{2x^{2}-7x-5}{2x+3}
asymptotes of f(x)=((x^4-1))/x
asymptotes\:f(x)=\frac{(x^{4}-1)}{x}
inverse of f(x)=4*3^x
inverse\:f(x)=4\cdot\:3^{x}
asymptotes of (4x+20)/(x^2+4x-5)
asymptotes\:\frac{4x+20}{x^{2}+4x-5}
intercepts of-x^2+12x-36
intercepts\:-x^{2}+12x-36
domain of f(x)=sqrt(2)
domain\:f(x)=\sqrt{2}
domain of f(x)= 1/(5x+5)
domain\:f(x)=\frac{1}{5x+5}
line m=(-1)/4 ,(7,0)
line\:m=\frac{-1}{4},(7,0)
range of f(x)=|x|-5
range\:f(x)=\left|x\right|-5
asymptotes of f(x)=(x^2-3x-10)/(x-5)
asymptotes\:f(x)=\frac{x^{2}-3x-10}{x-5}
parity y=cos(sqrt(sin(tan(pix))))
parity\:y=\cos(\sqrt{\sin(\tan(πx))})
intercepts of f(x)=x^2(x-10)
intercepts\:f(x)=x^{2}(x-10)
1
..
421
422
423
424
425
..
1324