extreme f(x)=3(x-e^x)
|
extreme\:f(x)=3(x-e^{x})
|
extreme f(x)=x^3+2x^2-4x+7
|
extreme\:f(x)=x^{3}+2x^{2}-4x+7
|
extreme f(x,y)=-4xy+2x^2-10y^2-4y^3-1
|
extreme\:f(x,y)=-4xy+2x^{2}-10y^{2}-4y^{3}-1
|
extreme 4sin(2x),-2pi<= x<= pi
|
extreme\:4\sin(2x),-2π\le\:x\le\:π
|
minimum 0.3x^2-66x+15239
|
minimum\:0.3x^{2}-66x+15239
|
extreme points of f(x)=x^3-12x
|
extreme\:points\:f(x)=x^{3}-12x
|
minimum a(-6-0)^2
|
minimum\:a(-6-0)^{2}
|
f(x,y)=2xy-(x^2y)/3-(2xy^2)/3
|
f(x,y)=2xy-\frac{x^{2}y}{3}-\frac{2xy^{2}}{3}
|
extreme f(x)=4sec(x)
|
extreme\:f(x)=4\sec(x)
|
f(x,y)=yx^2-3xye^{-xy}
|
f(x,y)=yx^{2}-3xye^{-xy}
|
f(x,y)=x^3-9xy-4y^2
|
f(x,y)=x^{3}-9xy-4y^{2}
|
extreme y=4-6x^2
|
extreme\:y=4-6x^{2}
|
extreme (x^2+2)/(x-3)
|
extreme\:\frac{x^{2}+2}{x-3}
|
extreme f(x)=5+(48)/x+3x^2
|
extreme\:f(x)=5+\frac{48}{x}+3x^{2}
|
E(x,y)=15xy-22xy
|
E(x,y)=15xy-22xy
|
extreme f(x)=4(x-4)^{2/3}
|
extreme\:f(x)=4(x-4)^{\frac{2}{3}}
|
monotone intervals f(x)= 1/3 x^3-3/2 x^2
|
monotone\:intervals\:f(x)=\frac{1}{3}x^{3}-\frac{3}{2}x^{2}
|
extreme f(x)=2x^2+16x-5
|
extreme\:f(x)=2x^{2}+16x-5
|
extreme f(x)=x(x-1)^5
|
extreme\:f(x)=x(x-1)^{5}
|
minimum 2x^2-30x^2+54x+2
|
minimum\:2x^{2}-30x^{2}+54x+2
|
extreme y=(x-6)ln(x-6)
|
extreme\:y=(x-6)\ln(x-6)
|
f(x,y)=(2y^2+x^2)e^{-(x^2+y^2-3)}
|
f(x,y)=(2y^{2}+x^{2})e^{-(x^{2}+y^{2}-3)}
|
p(x)=12x^4-62x^3+ax^2-98x+30
|
p(x)=12x^{4}-62x^{3}+ax^{2}-98x+30
|
y=3z^2-3x^2
|
y=3z^{2}-3x^{2}
|
extreme 4-y^3-x^2-3xy
|
extreme\:4-y^{3}-x^{2}-3xy
|
extreme (10x^3-2)/(2x^3+5x^2+9x)
|
extreme\:\frac{10x^{3}-2}{2x^{3}+5x^{2}+9x}
|
minimum-6x^2+336x-4320
|
minimum\:-6x^{2}+336x-4320
|
inverse of f(x)=25
|
inverse\:f(x)=25
|
extreme y=\sqrt[3]{x}+1/(\sqrt[3]{x)}
|
extreme\:y=\sqrt[3]{x}+\frac{1}{\sqrt[3]{x}}
|
extreme f(x)=(12x)/(3.5x^2+2.5)
|
extreme\:f(x)=\frac{12x}{3.5x^{2}+2.5}
|
extreme f(y)=14x^2-2x^3+2y^2+4xy
|
extreme\:f(y)=14x^{2}-2x^{3}+2y^{2}+4xy
|
extreme f(x)=x(152-x)
|
extreme\:f(x)=x(152-x)
|
extreme f(x,y)=7x^2y+9xy^2
|
extreme\:f(x,y)=7x^{2}y+9xy^{2}
|
extreme f(x)=x^2+xy+y^2+2x-2y+6
|
extreme\:f(x)=x^{2}+xy+y^{2}+2x-2y+6
|
extreme f(x)=165000x-100x^2
|
extreme\:f(x)=165000x-100x^{2}
|
extreme x/(x^2+81)
|
extreme\:\frac{x}{x^{2}+81}
|
extreme f(x)= 1/(sqrt(2pi))e^{(-x^2)/2}
|
extreme\:f(x)=\frac{1}{\sqrt{2π}}e^{\frac{-x^{2}}{2}}
|
extreme f(x)=(2x)/(x^2+16),-5<= x<= 5
|
extreme\:f(x)=\frac{2x}{x^{2}+16},-5\le\:x\le\:5
|
symmetry x^2-3
|
symmetry\:x^{2}-3
|
slope intercept of x+y=15
|
slope\:intercept\:x+y=15
|
extreme f(x)=(3+x)/(7-x),-7<= x<= 0
|
extreme\:f(x)=\frac{3+x}{7-x},-7\le\:x\le\:0
|
extreme f(x)=e^{6x^2+4y^2+10}
|
extreme\:f(x)=e^{6x^{2}+4y^{2}+10}
|
extreme f(x,y)=(x^2-y^2)e^{-(x^2+y^2)}
|
extreme\:f(x,y)=(x^{2}-y^{2})e^{-(x^{2}+y^{2})}
|
extreme f(x)=x(x+3)e^{-2x}
|
extreme\:f(x)=x(x+3)e^{-2x}
|
extreme f(x)=-45x^2+400x
|
extreme\:f(x)=-45x^{2}+400x
|
extreme f(x)=3x^2-2x+5
|
extreme\:f(x)=3x^{2}-2x+5
|
extreme f(x)=((2x^2+4x))/((2+x^2))
|
extreme\:f(x)=\frac{(2x^{2}+4x)}{(2+x^{2})}
|
extreme f(x)=x^3+8x+12
|
extreme\:f(x)=x^{3}+8x+12
|
extreme 7-6x-x^3
|
extreme\:7-6x-x^{3}
|
parity x^3+x
|
parity\:x^{3}+x
|
extreme f(x)=x(e^{-x/3})
|
extreme\:f(x)=x(e^{-\frac{x}{3}})
|
extreme f(x)=x^2-14x+4
|
extreme\:f(x)=x^{2}-14x+4
|
extreme f(x)=x^2-14x+6
|
extreme\:f(x)=x^{2}-14x+6
|
extreme arcsin(-1/2)
|
extreme\:\arcsin(-\frac{1}{2})
|
f(x,y)=x^3+3xy+y^3+k
|
f(x,y)=x^{3}+3xy+y^{3}+k
|
extreme f(x)=5+5x-5x^2,0<= x<= 3
|
extreme\:f(x)=5+5x-5x^{2},0\le\:x\le\:3
|
extreme f(x)=-2x^2-x+4
|
extreme\:f(x)=-2x^{2}-x+4
|
extreme y=1250sin(2x)
|
extreme\:y=1250\sin(2x)
|
extreme f(x,y)=e^{2y-x^2-y^2}
|
extreme\:f(x,y)=e^{2y-x^{2}-y^{2}}
|
extreme f(x,y)=x^2(x+y)+6xy
|
extreme\:f(x,y)=x^{2}(x+y)+6xy
|
asymptotes of (x^2+2)/(x-2)
|
asymptotes\:\frac{x^{2}+2}{x-2}
|
extreme f(x)=-4x^3+12x^2-10
|
extreme\:f(x)=-4x^{3}+12x^{2}-10
|
extreme f(x)=2x+7ln(x)
|
extreme\:f(x)=2x+7\ln(x)
|
minimum 68-11
|
minimum\:68-11
|
midpoint (4,-1)(6,4)
|
midpoint\:(4,-1)(6,4)
|
inverse of f(x)=-0.025x^2+0.35x
|
inverse\:f(x)=-0.025x^{2}+0.35x
|
y=5
|
y=5
|
asymptotes of f(x)=(sin(x))/(1+cos(x))
|
asymptotes\:f(x)=\frac{\sin(x)}{1+\cos(x)}
|
monotone intervals xe^{-(x^2)/2}
|
monotone\:intervals\:xe^{-\frac{x^{2}}{2}}
|
inverse of f(x)=(9+x)/3
|
inverse\:f(x)=\frac{9+x}{3}
|
extreme points of 3x^6-7x^5
|
extreme\:points\:3x^{6}-7x^{5}
|
inverse of f(x)= 1/(x+2)-2
|
inverse\:f(x)=\frac{1}{x+2}-2
|
domain of (4x)/(9x-1)
|
domain\:\frac{4x}{9x-1}
|
intercepts of f(x)=(x^2-3x+2)/(x-4)
|
intercepts\:f(x)=\frac{x^{2}-3x+2}{x-4}
|
asymptotes of x-3\sqrt[3]{x}
|
asymptotes\:x-3\sqrt[3]{x}
|
slope of y= 2/9 x
|
slope\:y=\frac{2}{9}x
|
domain of f(x)=((4x+7))/(xsqrt(x+9))
|
domain\:f(x)=\frac{(4x+7)}{x\sqrt{x+9}}
|
inverse of f(x)=(x^7)/3+3
|
inverse\:f(x)=\frac{x^{7}}{3}+3
|
intercepts of f(x)=(x^2-4)/(3x^2)
|
intercepts\:f(x)=\frac{x^{2}-4}{3x^{2}}
|
range of f(x)=2x-10
|
range\:f(x)=2x-10
|
line (2/5 ,5)(2,-1)
|
line\:(\frac{2}{5},5)(2,-1)
|
inverse of f(x)=2.5+(5000)/x
|
inverse\:f(x)=2.5+\frac{5000}{x}
|
perpendicular y= 1/3 x-2
|
perpendicular\:y=\frac{1}{3}x-2
|
intercepts of f(x)=x^2+x-20
|
intercepts\:f(x)=x^{2}+x-20
|
slope of 8x-6y=8
|
slope\:8x-6y=8
|
y=3x+1
|
y=3x+1
|
monotone intervals 2x^2
|
monotone\:intervals\:2x^{2}
|
asymptotes of (5+4x)/(x+3)
|
asymptotes\:\frac{5+4x}{x+3}
|
asymptotes of f(x)=-3/(x-1)-1
|
asymptotes\:f(x)=-\frac{3}{x-1}-1
|
asymptotes of f(x)=(x-2)/(x-1)
|
asymptotes\:f(x)=\frac{x-2}{x-1}
|
inverse of f(x)=(4x-2)/(x-4)
|
inverse\:f(x)=\frac{4x-2}{x-4}
|
asymptotes of (3x)/(x^2-1)
|
asymptotes\:\frac{3x}{x^{2}-1}
|
inverse of f(x)=sqrt(2x)+3
|
inverse\:f(x)=\sqrt{2x}+3
|
asymptotes of (x^4)/(x^2+5)
|
asymptotes\:\frac{x^{4}}{x^{2}+5}
|
extreme points of f(x)=x^{1/3}
|
extreme\:points\:f(x)=x^{\frac{1}{3}}
|
domain of f(x)=7sqrt(2x-13)+10
|
domain\:f(x)=7\sqrt{2x-13}+10
|
inverse of f(x)=3x-5/4
|
inverse\:f(x)=3x-\frac{5}{4}
|
domain of arccos(x)
|
domain\:\arccos(x)
|
domain of f(x)= 1/(x^2-2)+sqrt(x^2-3)
|
domain\:f(x)=\frac{1}{x^{2}-2}+\sqrt{x^{2}-3}
|
inverse of f(x)=15.45(1.46^x)
|
inverse\:f(x)=15.45(1.46^{x})
|