extreme y=3xln(x)
|
extreme\:y=3x\ln(x)
|
extreme f(x)=(100000)/x+75000+1000x
|
extreme\:f(x)=\frac{100000}{x}+75000+1000x
|
extreme y=e^x-3e^{-x}-4x
|
extreme\:y=e^{x}-3e^{-x}-4x
|
extreme f(x)=-6x^3-54x^2-144x-90
|
extreme\:f(x)=-6x^{3}-54x^{2}-144x-90
|
extreme f(x,y)=sqrt(25-x^2-y^2)
|
extreme\:f(x,y)=\sqrt{25-x^{2}-y^{2}}
|
f(x)=((x+y-xy)/(x-y+xy))
|
f(x)=(\frac{x+y-xy}{x-y+xy})
|
minimum 3(x+2)(x-10)
|
minimum\:3(x+2)(x-10)
|
extreme f(x,y)=1-x^2-x-3y^2+y
|
extreme\:f(x,y)=1-x^{2}-x-3y^{2}+y
|
extreme f(x)=1.4te^{-2.9t}
|
extreme\:f(x)=1.4te^{-2.9t}
|
asymptotes of (x+2)/(x^2-x-2)
|
asymptotes\:\frac{x+2}{x^{2}-x-2}
|
extreme f(x)=2x^3-9x^2-24x+9,-2<= x<= 5
|
extreme\:f(x)=2x^{3}-9x^{2}-24x+9,-2\le\:x\le\:5
|
extreme f(x)=(9x)/(sqrt(x-4))
|
extreme\:f(x)=\frac{9x}{\sqrt{x-4}}
|
extreme f(x)=xe^{(-x^2)/(32)}
|
extreme\:f(x)=xe^{\frac{-x^{2}}{32}}
|
extreme 2400=30x*10y
|
extreme\:2400=30x\cdot\:10y
|
f(-1.2)=3p^3+4q^3-2p^2q-4p-5q
|
f(-1.2)=3p^{3}+4q^{3}-2p^{2}q-4p-5q
|
f(x)=8ex-y-5xy+6y^2
|
f(x)=8ex-y-5xy+6y^{2}
|
extreme f(x)=-1/50 x^2+1.85x-8.5
|
extreme\:f(x)=-\frac{1}{50}x^{2}+1.85x-8.5
|
extreme f(x)=2x^3-3x^2-6x
|
extreme\:f(x)=2x^{3}-3x^{2}-6x
|
f(x,y)=x^2-2*x+2*y^2-4*y
|
f(x,y)=x^{2}-2\cdot\:x+2\cdot\:y^{2}-4\cdot\:y
|
extreme f(x)=0.00397t^2-0.593t+33.718
|
extreme\:f(x)=0.00397t^{2}-0.593t+33.718
|
critical points of 2(x-6)^{2/3}+6
|
critical\:points\:2(x-6)^{\frac{2}{3}}+6
|
extreme f(x)=f(x)=ex-x,-4<= x<= 2
|
extreme\:f(x)=f(x)=ex-x,-4\le\:x\le\:2
|
extreme f(x)=4x^2-48x+190
|
extreme\:f(x)=4x^{2}-48x+190
|
minimum f(x,y)=e^{9x^2+6y^2+1}
|
minimum\:f(x,y)=e^{9x^{2}+6y^{2}+1}
|
extreme f(x)=((sqrt(3)-cos(θ))/(sin(θ)))
|
extreme\:f(x)=(\frac{\sqrt{3}-\cos(θ)}{\sin(θ)})
|
extreme f(xy)=-x^3-y^2+3x-2y
|
extreme\:f(xy)=-x^{3}-y^{2}+3x-2y
|
minimum 9/8 y 3/4
|
minimum\:\frac{9}{8}y\frac{3}{4}
|
extreme f(x)=-2x^3+27x^2-108x,2<= x<= 7
|
extreme\:f(x)=-2x^{3}+27x^{2}-108x,2\le\:x\le\:7
|
f(x,y)=sqrt(64-4x^2-y^2)
|
f(x,y)=\sqrt{64-4x^{2}-y^{2}}
|
extreme f(x)=x^2+3y^2-2x+6y
|
extreme\:f(x)=x^{2}+3y^{2}-2x+6y
|
extreme (-8x+75)/(9x-61)
|
extreme\:\frac{-8x+75}{9x-61}
|
domain of f(x)=-3|7-2x|+4
|
domain\:f(x)=-3|7-2x|+4
|
midpoint (-1,6)(4,0)
|
midpoint\:(-1,6)(4,0)
|
extreme 4+(7+5x)^{2/5}
|
extreme\:4+(7+5x)^{\frac{2}{5}}
|
extreme 2.8x
|
extreme\:2.8x
|
extreme 5x+5cot(x/2), pi/4 <x<(7pi)/4
|
extreme\:5x+5\cot(\frac{x}{2}),\frac{π}{4}<x<\frac{7π}{4}
|
extreme f(x)=-(x^2-50)/(x^2-25)
|
extreme\:f(x)=-\frac{x^{2}-50}{x^{2}-25}
|
extreme f(x)=(1/8)e^{-x}
|
extreme\:f(x)=(\frac{1}{8})e^{-x}
|
U(x,y)=-x^2-y^2+22x+18y-102
|
U(x,y)=-x^{2}-y^{2}+22x+18y-102
|
extreme f(x)=-2x+7
|
extreme\:f(x)=-2x+7
|
f(t)=7e^{-7t}u(t)
|
f(t)=7e^{-7t}u(t)
|
extreme y=(x-(200)/x)
|
extreme\:y=(x-\frac{200}{x})
|
extreme f(x)=3x^2+4y^2
|
extreme\:f(x)=3x^{2}+4y^{2}
|
inverse of f(x)=8x-3
|
inverse\:f(x)=8x-3
|
f(y)=4x^3y+3x^2+y^2+4-y
|
f(y)=4x^{3}y+3x^{2}+y^{2}+4-y
|
extreme-2ln(x-6)+2
|
extreme\:-2\ln(x-6)+2
|
extreme y=1+40x^3-3x^5
|
extreme\:y=1+40x^{3}-3x^{5}
|
f(x)=(4,2x-10)=(x-1,y+2)
|
f(x)=(4,2x-10)=(x-1,y+2)
|
extreme f(x)=80x^{1/4}-x^{5/4}
|
extreme\:f(x)=80x^{\frac{1}{4}}-x^{\frac{5}{4}}
|
minimum f(x)=120t-16t^2
|
minimum\:f(x)=120t-16t^{2}
|
extreme x^2-y^2+1
|
extreme\:x^{2}-y^{2}+1
|
extreme f(x,y)=9x^2-2x^3+3y^2+6xy
|
extreme\:f(x,y)=9x^{2}-2x^{3}+3y^{2}+6xy
|
extreme f(x)=395x^2-2370x^3,0<= x<= 0.16
|
extreme\:f(x)=395x^{2}-2370x^{3},0\le\:x\le\:0.16
|
perpendicular-2
|
perpendicular\:-2
|
extreme C(t)= t/(4t^2+11)
|
extreme\:C(t)=\frac{t}{4t^{2}+11}
|
f(x)=2x^3+y^3+3x^2-3y-12x-4
|
f(x)=2x^{3}+y^{3}+3x^{2}-3y-12x-4
|
minimum f(x)=(2x)/(x^2+4),-4<= x<= 4
|
minimum\:f(x)=\frac{2x}{x^{2}+4},-4\le\:x\le\:4
|
extreme (5x)/(x^2-9)
|
extreme\:\frac{5x}{x^{2}-9}
|
extreme 3x^2+24x+45
|
extreme\:3x^{2}+24x+45
|
extreme f(x)=(e^x)/(x^7)
|
extreme\:f(x)=\frac{e^{x}}{x^{7}}
|
extreme f(x)=7x^4-2x^2-8x+8
|
extreme\:f(x)=7x^{4}-2x^{2}-8x+8
|
extreme f(x)=(x^3)/(-x^2+4)
|
extreme\:f(x)=\frac{x^{3}}{-x^{2}+4}
|
extreme f(x)=((x^2-63))/(x-8)
|
extreme\:f(x)=\frac{(x^{2}-63)}{x-8}
|
inverse of f(x)=18+\sqrt[3]{x}
|
inverse\:f(x)=18+\sqrt[3]{x}
|
extreme x^3+8y^3-6xy+5
|
extreme\:x^{3}+8y^{3}-6xy+5
|
extreme f(x)=4x^3-60x^2+200x
|
extreme\:f(x)=4x^{3}-60x^{2}+200x
|
extreme f(x)=x^3+2y^2+3xy+8
|
extreme\:f(x)=x^{3}+2y^{2}+3xy+8
|
extreme f(x,y)=x^2+xy+y^2-6x-9y
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-6x-9y
|
extreme (x+3)/(x+2)
|
extreme\:\frac{x+3}{x+2}
|
extreme f(x)=x(sqrt((39900-x)/5))
|
extreme\:f(x)=x(\sqrt{\frac{39900-x}{5}})
|
extreme f(x)=x^3-x^2-x+5,-1<= x<= 2
|
extreme\:f(x)=x^{3}-x^{2}-x+5,-1\le\:x\le\:2
|
extreme f(x)=24x-24x^2+6x^3
|
extreme\:f(x)=24x-24x^{2}+6x^{3}
|
extreme f(x)=-2x^2-4x+3
|
extreme\:f(x)=-2x^{2}-4x+3
|
extreme f(x)=x^2log_{9}(x)
|
extreme\:f(x)=x^{2}\log_{9}(x)
|
intercepts of x^2+4x-3
|
intercepts\:x^{2}+4x-3
|
extreme f(x)=2000+530(ln(x))
|
extreme\:f(x)=2000+530(\ln(x))
|
extreme f(x)=(3x+4)/(6x+1)
|
extreme\:f(x)=\frac{3x+4}{6x+1}
|
extreme f(x)=3x^4-96x^2+1
|
extreme\:f(x)=3x^{4}-96x^{2}+1
|
extreme f(x)=0.003x^2+4.2x-50
|
extreme\:f(x)=0.003x^{2}+4.2x-50
|
extreme f(x)=-3x^2+1
|
extreme\:f(x)=-3x^{2}+1
|
extreme f(x)=-3x^2+3
|
extreme\:f(x)=-3x^{2}+3
|
extreme f(x)=2x^3+x^2-20x
|
extreme\:f(x)=2x^{3}+x^{2}-20x
|
extreme f(x)=2x^2-4x[0.3]
|
extreme\:f(x)=2x^{2}-4x[0.3]
|
extreme f(xy)=4x+8y
|
extreme\:f(xy)=4x+8y
|
extreme 5sin(3x)-5
|
extreme\:5\sin(3x)-5
|
inverse of (25)
|
inverse\:(25)
|
f(x,y)=3x^2y+4xy-2
|
f(x,y)=3x^{2}y+4xy-2
|
extreme 1/2 (5x-3)
|
extreme\:\frac{1}{2}(5x-3)
|
extreme f(x)=(3x^2+6)^2
|
extreme\:f(x)=(3x^{2}+6)^{2}
|
f(x,y)=x^2+4xy+5y^2-7x+9y-10
|
f(x,y)=x^{2}+4xy+5y^{2}-7x+9y-10
|
extreme f(x)=9x-18cos(x),-2<= x<= 0
|
extreme\:f(x)=9x-18\cos(x),-2\le\:x\le\:0
|
extreme f(x)=2x^2-4x,0<= x<= 3
|
extreme\:f(x)=2x^{2}-4x,0\le\:x\le\:3
|
extreme x^2-18x+79
|
extreme\:x^{2}-18x+79
|
extreme f(x)=4x-2tan(x)
|
extreme\:f(x)=4x-2\tan(x)
|
minimum x^2-8ln(x)
|
minimum\:x^{2}-8\ln(x)
|
extreme f(x)=3x^4-294x^2+3,-8<= x<= 8
|
extreme\:f(x)=3x^{4}-294x^{2}+3,-8\le\:x\le\:8
|
intercepts of f(x)=e^{3x}(2-x)
|
intercepts\:f(x)=e^{3x}(2-x)
|
extreme f(x)=2x^2-7,-7<= x<= 7
|
extreme\:f(x)=2x^{2}-7,-7\le\:x\le\:7
|
extreme x^2-18x+86
|
extreme\:x^{2}-18x+86
|
minimum 2x^2-4x+6
|
minimum\:2x^{2}-4x+6
|