slope of 4x-y=3
|
slope\:4x-y=3
|
extreme f(x)=x^{-2}-13x^{-1}
|
extreme\:f(x)=x^{-2}-13x^{-1}
|
extreme f(x)=68x-x^3
|
extreme\:f(x)=68x-x^{3}
|
extreme f(x)=2x^3-7
|
extreme\:f(x)=2x^{3}-7
|
f(x)=x^4+2y^2-2xy
|
f(x)=x^{4}+2y^{2}-2xy
|
extreme 3+4x^2-x^4
|
extreme\:3+4x^{2}-x^{4}
|
f(x,y)=(2e^{-x^2}+e^{-3y^2})
|
f(x,y)=(2e^{-x^{2}}+e^{-3y^{2}})
|
f(x,y)=(x^4+2x^3y^2+2)/(3(x-1)y)
|
f(x,y)=\frac{x^{4}+2x^{3}y^{2}+2}{3(x-1)y}
|
extreme f(x)=(x-1)^2+sqrt(4-4x^2)
|
extreme\:f(x)=(x-1)^{2}+\sqrt{4-4x^{2}}
|
extreme x^2-5xy+4y^2-2x+5y
|
extreme\:x^{2}-5xy+4y^{2}-2x+5y
|
extreme f(x)=x^2+4x+11
|
extreme\:f(x)=x^{2}+4x+11
|
distance (2,9)(7,8)
|
distance\:(2,9)(7,8)
|
extreme f(x)=x^2+4x+10
|
extreme\:f(x)=x^{2}+4x+10
|
extreme f(x)=x^2+4x+17
|
extreme\:f(x)=x^{2}+4x+17
|
extreme f(x)=xsqrt(324-x^2)
|
extreme\:f(x)=x\sqrt{324-x^{2}}
|
minimum y=-9/4 x^2+8
|
minimum\:y=-\frac{9}{4}x^{2}+8
|
extreme f(x,y)=y^3+6x^2y-6x^2-6y^2+3
|
extreme\:f(x,y)=y^{3}+6x^{2}y-6x^{2}-6y^{2}+3
|
extreme f(x)= 4/3 x^3+22x^2+96x+7
|
extreme\:f(x)=\frac{4}{3}x^{3}+22x^{2}+96x+7
|
extreme f(x)=x^2(x-3)^2
|
extreme\:f(x)=x^{2}(x-3)^{2}
|
f(x,y)=21xye^{-x^2-y^2}
|
f(x,y)=21xye^{-x^{2}-y^{2}}
|
extreme 2x^3-3x^2-x+9
|
extreme\:2x^{3}-3x^{2}-x+9
|
extreme f(x)=(x-6)e^{-6x}
|
extreme\:f(x)=(x-6)e^{-6x}
|
f(x)=2x-4
|
f(x)=2x-4
|
extreme points of y=x^4+2x^3-2x^2+1
|
extreme\:points\:y=x^{4}+2x^{3}-2x^{2}+1
|
extreme 2t^{10}(4-t^2)^5
|
extreme\:2t^{10}(4-t^{2})^{5}
|
extreme f(x)=f(x,y)=-x^2-2y^2+xy+x+3y
|
extreme\:f(x)=f(x,y)=-x^{2}-2y^{2}+xy+x+3y
|
extreme f(y)=x^3+y^3-27xy
|
extreme\:f(y)=x^{3}+y^{3}-27xy
|
extreme f(x)=-2x^2+4x+6
|
extreme\:f(x)=-2x^{2}+4x+6
|
extreme f(x)=12x^2-88x+121
|
extreme\:f(x)=12x^{2}-88x+121
|
extreme f(x)=9x^3-7x^2+3x+10,-5<= x<= 6
|
extreme\:f(x)=9x^{3}-7x^{2}+3x+10,-5\le\:x\le\:6
|
f(x,y)=sqrt(400-49x^2-9y^2)
|
f(x,y)=\sqrt{400-49x^{2}-9y^{2}}
|
extreme f(x)=2x^3+24x^2+72x+7
|
extreme\:f(x)=2x^{3}+24x^{2}+72x+7
|
f(x,y)=sqrt(400-64x^2-36y^2)
|
f(x,y)=\sqrt{400-64x^{2}-36y^{2}}
|
extreme xe^{((5-x))/4}
|
extreme\:xe^{\frac{(5-x)}{4}}
|
line m=16(-1,-9/2)
|
line\:m=16(-1,-\frac{9}{2})
|
extreme-x^4+3x^3-x^2-5x+7
|
extreme\:-x^{4}+3x^{3}-x^{2}-5x+7
|
extreme f(x)=-3x^3-9
|
extreme\:f(x)=-3x^{3}-9
|
extreme f(x)=-1/2 x^2+5-8
|
extreme\:f(x)=-\frac{1}{2}x^{2}+5-8
|
extreme f(x)=-1/10 x^3+9x^2+500
|
extreme\:f(x)=-\frac{1}{10}x^{3}+9x^{2}+500
|
extreme f(x)=x(x-2)e^{-3x}
|
extreme\:f(x)=x(x-2)e^{-3x}
|
extreme f(x,y)=x^3-4xy+y^2
|
extreme\:f(x,y)=x^{3}-4xy+y^{2}
|
extreme f(t)=-4t^2+208t+120
|
extreme\:f(t)=-4t^{2}+208t+120
|
extreme f(x)=2x^3-2x^4
|
extreme\:f(x)=2x^{3}-2x^{4}
|
extreme f(x)=sqrt(x)((x^2)/5-4)
|
extreme\:f(x)=\sqrt{x}(\frac{x^{2}}{5}-4)
|
minimum-x^2-6x-4
|
minimum\:-x^{2}-6x-4
|
domain of (x^2+9x+20)/(x+4)
|
domain\:\frac{x^{2}+9x+20}{x+4}
|
extreme f(x)= x/(x-9),11<= x<= 13
|
extreme\:f(x)=\frac{x}{x-9},11\le\:x\le\:13
|
extreme f(x)=xsqrt(1-x)
|
extreme\:f(x)=x\sqrt{1-x}
|
extreme f(x)=(x+1)/(2x+x+1)
|
extreme\:f(x)=\frac{x+1}{2x+x+1}
|
f(x,y)=7x^2+8xy+9y^2+9xy^2+5x^2y
|
f(x,y)=7x^{2}+8xy+9y^{2}+9xy^{2}+5x^{2}y
|
minimum x^3-9x^2+15x
|
minimum\:x^{3}-9x^{2}+15x
|
extreme f(x)=(1/(x^3-2x^2)),1<= x<= 7/5
|
extreme\:f(x)=(\frac{1}{x^{3}-2x^{2}}),1\le\:x\le\:\frac{7}{5}
|
extreme e^{-(x^2+y^2)}(x^2+2y^2)
|
extreme\:e^{-(x^{2}+y^{2})}(x^{2}+2y^{2})
|
extreme 1/3 x^3+2x+4x+1
|
extreme\:\frac{1}{3}x^{3}+2x+4x+1
|
extreme y=-x^3+3x^2-5
|
extreme\:y=-x^{3}+3x^{2}-5
|
extreme f(x)=x^3-ax^2
|
extreme\:f(x)=x^{3}-ax^{2}
|
extreme points of y=x+(3600)/x
|
extreme\:points\:y=x+\frac{3600}{x}
|
extreme f(x)=3x^2+4y^3-12xy+37
|
extreme\:f(x)=3x^{2}+4y^{3}-12xy+37
|
extreme f(x)=15x+18y-2x^2+2xy+3y^2
|
extreme\:f(x)=15x+18y-2x^{2}+2xy+3y^{2}
|
f(x,y)=x^3-12x+y^2+6y+14
|
f(x,y)=x^{3}-12x+y^{2}+6y+14
|
extreme f(x)=x^{-7}ln(x)
|
extreme\:f(x)=x^{-7}\ln(x)
|
extreme f(x,y)=y(e^x-1)
|
extreme\:f(x,y)=y(e^{x}-1)
|
minimum y=(5x^2)/((x-4)^2)
|
minimum\:y=\frac{5x^{2}}{(x-4)^{2}}
|
extreme f(x)=x(x-10)^2
|
extreme\:f(x)=x(x-10)^{2}
|
extreme 5x^4-x^5+4
|
extreme\:5x^{4}-x^{5}+4
|
extreme f(x)=x^2+2y+y^2-8
|
extreme\:f(x)=x^{2}+2y+y^{2}-8
|
extreme f(x)=xsqrt(3x-x^2)
|
extreme\:f(x)=x\sqrt{3x-x^{2}}
|
domain of (4/x)/(4/x+4)
|
domain\:\frac{\frac{4}{x}}{\frac{4}{x}+4}
|
extreme y=cos(3x)-2
|
extreme\:y=\cos(3x)-2
|
extreme f(x)=-3x^3+4x^2,-2<= x<= 2
|
extreme\:f(x)=-3x^{3}+4x^{2},-2\le\:x\le\:2
|
minimum (x^2+36)/(x^2)
|
minimum\:\frac{x^{2}+36}{x^{2}}
|
extreme f(x,y)=xe^y-x^2-e^y
|
extreme\:f(x,y)=xe^{y}-x^{2}-e^{y}
|
extreme f(x)=((5+x))/((3-x))
|
extreme\:f(x)=\frac{(5+x)}{(3-x)}
|
extreme f(x)=-1/2 x^4+16x^2-15
|
extreme\:f(x)=-\frac{1}{2}x^{4}+16x^{2}-15
|
extreme f(x)=10x^{3/4}e^{-x}
|
extreme\:f(x)=10x^{\frac{3}{4}}e^{-x}
|
extreme f(x)=2x-4y+6z=56
|
extreme\:f(x)=2x-4y+6z=56
|
y=1-x^2-z^2
|
y=1-x^{2}-z^{2}
|
intercepts of f(x)= 3/((x-1)(x^2-4))
|
intercepts\:f(x)=\frac{3}{(x-1)(x^{2}-4)}
|
minimum 20x^2-200x+3
|
minimum\:20x^{2}-200x+3
|
extreme y=(x^4)/(1+x^3)
|
extreme\:y=\frac{x^{4}}{1+x^{3}}
|
minimum (200)/(x+4+2x)
|
minimum\:\frac{200}{x+4+2x}
|
extreme f(x)=-0.3t^2+2.4t+98.2
|
extreme\:f(x)=-0.3t^{2}+2.4t+98.2
|
extreme f(x)=((x^2-8))/((x-3))
|
extreme\:f(x)=\frac{(x^{2}-8)}{(x-3)}
|
extreme f(x)=4.3x-0.01x^2-8
|
extreme\:f(x)=4.3x-0.01x^{2}-8
|
extreme f(x)=x^5-3125x,-7<= x<= 7
|
extreme\:f(x)=x^{5}-3125x,-7\le\:x\le\:7
|
extreme (-2ln(x)-2)/(x^2)
|
extreme\:\frac{-2\ln(x)-2}{x^{2}}
|
extreme f(x)=x^2+(200)/x ,[0,infinity ]
|
extreme\:f(x)=x^{2}+\frac{200}{x},[0,\infty\:]
|
domain of f(x)=((x^2+x+2))/(x-1)
|
domain\:f(x)=\frac{(x^{2}+x+2)}{x-1}
|
minimum 3x^2-6x-9,0<= x<= 4
|
minimum\:3x^{2}-6x-9,0\le\:x\le\:4
|
minimum ((1-x^2)^3)/(x^3)
|
minimum\:\frac{(1-x^{2})^{3}}{x^{3}}
|
extreme 121000x-1000/28 x^2
|
extreme\:121000x-\frac{1000}{28}x^{2}
|
extreme f(x)=-8/3 x^3+4x^2+48x+9
|
extreme\:f(x)=-\frac{8}{3}x^{3}+4x^{2}+48x+9
|
extreme f(x)=1400x-2x^2
|
extreme\:f(x)=1400x-2x^{2}
|
extreme 100x+y
|
extreme\:100x+y
|
minimum tan(x)
|
minimum\:\tan(x)
|
extreme 1/(x^2-3*x+3)
|
extreme\:\frac{1}{x^{2}-3\cdot\:x+3}
|
S(b,c)=(A+b)c
|
S(b,c)=(A+b)c
|
extreme x^4+12x^3-12x+11
|
extreme\:x^{4}+12x^{3}-12x+11
|
domain of 2/(3x+9)
|
domain\:\frac{2}{3x+9}
|
extreme x^2-130x+4000
|
extreme\:x^{2}-130x+4000
|