f(x,y)=x^3y^2+2xy-5
|
f(x,y)=x^{3}y^{2}+2xy-5
|
asymptotes of f(x)=(4x)/(x^2+4)
|
asymptotes\:f(x)=\frac{4x}{x^{2}+4}
|
extreme x^6-6/5 x^5
|
extreme\:x^{6}-\frac{6}{5}x^{5}
|
P(x,y)=0.3+x^2+0.2y^2+0.1xy-14x-10y+2000
|
P(x,y)=0.3+x^{2}+0.2y^{2}+0.1xy-14x-10y+2000
|
f(x,y)= 1/2 x^2+1/2 y^2-x^2y+5
|
f(x,y)=\frac{1}{2}x^{2}+\frac{1}{2}y^{2}-x^{2}y+5
|
extreme y=(x^4}{12}-\frac{x^3)/2+x^2+10
|
extreme\:y=\frac{x^{4}}{12}-\frac{x^{3}}{2}+x^{2}+10
|
extreme f(x)=(x-2)^7(x+4)^7
|
extreme\:f(x)=(x-2)^{7}(x+4)^{7}
|
minimum sin^8(x)+cos^8(x)
|
minimum\:\sin^{8}(x)+\cos^{8}(x)
|
f(x,y)=sqrt(400-81x^2-4y^2)
|
f(x,y)=\sqrt{400-81x^{2}-4y^{2}}
|
extreme f(x)=9t^2+4t-10
|
extreme\:f(x)=9t^{2}+4t-10
|
extreme (x^2-4)^{1/7},-2<= x<= 3
|
extreme\:(x^{2}-4)^{\frac{1}{7}},-2\le\:x\le\:3
|
extreme f(x)= 3/2 t^4-t^6
|
extreme\:f(x)=\frac{3}{2}t^{4}-t^{6}
|
inverse of (7x)/(2x-3)
|
inverse\:\frac{7x}{2x-3}
|
extreme f(x,y)=-x^2-y^3+3y^2-2x+45y+1
|
extreme\:f(x,y)=-x^{2}-y^{3}+3y^{2}-2x+45y+1
|
extreme y=-12x^5-45x^4+20x^3-1
|
extreme\:y=-12x^{5}-45x^{4}+20x^{3}-1
|
extreme f(x)=x^3-2x-4x+4(0.3)
|
extreme\:f(x)=x^{3}-2x-4x+4(0.3)
|
minimum x^2+x^{-2}
|
minimum\:x^{2}+x^{-2}
|
extreme (x-3)^2(x-2)
|
extreme\:(x-3)^{2}(x-2)
|
extreme f(x)=6x^2-6x+9
|
extreme\:f(x)=6x^{2}-6x+9
|
extreme f(x)=2y^2+2xy+x^2-16x-20y
|
extreme\:f(x)=2y^{2}+2xy+x^{2}-16x-20y
|
extreme-2/(4x+x^2-2)
|
extreme\:-\frac{2}{4x+x^{2}-2}
|
extreme f(x)=4x^3+9x^2
|
extreme\:f(x)=4x^{3}+9x^{2}
|
f(x,y)=x^2*y^2+x^2-x*y^2-5*x-7
|
f(x,y)=x^{2}\cdot\:y^{2}+x^{2}-x\cdot\:y^{2}-5\cdot\:x-7
|
domain of f(x)=sqrt(-4x+8)
|
domain\:f(x)=\sqrt{-4x+8}
|
extreme (3x)/(x-2)
|
extreme\:\frac{3x}{x-2}
|
extreme f(x,y)=8xy+1/x+1/y
|
extreme\:f(x,y)=8xy+\frac{1}{x}+\frac{1}{y}
|
f(x,y)=3xy-6x-3y+7
|
f(x,y)=3xy-6x-3y+7
|
extreme 5+6x-8x^3
|
extreme\:5+6x-8x^{3}
|
extreme y=(t-3t^2)^{1/3}
|
extreme\:y=(t-3t^{2})^{\frac{1}{3}}
|
extreme f(x)=Y(x)=-2x^3-3x^2+3x+3
|
extreme\:f(x)=Y(x)=-2x^{3}-3x^{2}+3x+3
|
extreme f(1)=x^3-6x^2+9x+2
|
extreme\:f(1)=x^{3}-6x^{2}+9x+2
|
extreme f(x)= 2/3 x^3+11/2 x^2-21x+5
|
extreme\:f(x)=\frac{2}{3}x^{3}+\frac{11}{2}x^{2}-21x+5
|
extreme f(x)=(x-3)e^{-5x}
|
extreme\:f(x)=(x-3)e^{-5x}
|
extreme f(x)=-2^3-3*(-2^2)+3*(-2)+1
|
extreme\:f(x)=-2^{3}-3\cdot\:(-2^{2})+3\cdot\:(-2)+1
|
extreme g(x)=e^{-x^4},-3<= x<= 1
|
extreme\:g(x)=e^{-x^{4}},-3\le\:x\le\:1
|
extreme f(x,y)=x^2+y^2-4x+3y
|
extreme\:f(x,y)=x^{2}+y^{2}-4x+3y
|
extreme f(x,y)=2^3-y^2+2xy+1
|
extreme\:f(x,y)=2^{3}-y^{2}+2xy+1
|
minimum y=x^2+2
|
minimum\:y=x^{2}+2
|
extreme f(x)=2^{(x+0.528)}-10(x+0.528)
|
extreme\:f(x)=2^{(x+0.528)}-10(x+0.528)
|
minimum y=x^2-5
|
minimum\:y=x^{2}-5
|
extreme-x^2-4x+1
|
extreme\:-x^{2}-4x+1
|
extreme f(x)=3x^3-24x^2+48x-6
|
extreme\:f(x)=3x^{3}-24x^{2}+48x-6
|
extreme 5/(x+1)
|
extreme\:\frac{5}{x+1}
|
periodicity of f(x)=-3sin(2x+(pi)/2)
|
periodicity\:f(x)=-3\sin(2x+\frac{\pi}{2})
|
extreme f(x)=((x-1)^2)/(x^2-1)
|
extreme\:f(x)=\frac{(x-1)^{2}}{x^{2}-1}
|
extreme y=-(x-1)(x+2)^3
|
extreme\:y=-(x-1)(x+2)^{3}
|
minimum x^4-4x^3+14
|
minimum\:x^{4}-4x^{3}+14
|
extreme f(x)=(2x^2+18)/x
|
extreme\:f(x)=\frac{2x^{2}+18}{x}
|
extreme f(x)=-x^2-15.9x-57
|
extreme\:f(x)=-x^{2}-15.9x-57
|
extreme f(x,y)=x^2+y^2-4x+2y
|
extreme\:f(x,y)=x^{2}+y^{2}-4x+2y
|
extreme f(x)=(-x^2-10x-13)/(x+9)
|
extreme\:f(x)=\frac{-x^{2}-10x-13}{x+9}
|
extreme x^3-9x^2+1
|
extreme\:x^{3}-9x^{2}+1
|
extreme f(x)=(-24x^2-20x+24)/((x^2+1)^2)
|
extreme\:f(x)=\frac{-24x^{2}-20x+24}{(x^{2}+1)^{2}}
|
line (1,1),(4,-1/2)
|
line\:(1,1),(4,-\frac{1}{2})
|
extreme f(x)=x^2+y^2+20x-8y
|
extreme\:f(x)=x^{2}+y^{2}+20x-8y
|
extreme f(x)=x+y+8/(xy)
|
extreme\:f(x)=x+y+\frac{8}{xy}
|
minimum y=5-2x^2,-4<= x<= 2
|
minimum\:y=5-2x^{2},-4\le\:x\le\:2
|
extreme f(x)=-15051x^2+47796x+13402
|
extreme\:f(x)=-15051x^{2}+47796x+13402
|
extreme y=-3x^5+5x^3+1
|
extreme\:y=-3x^{5}+5x^{3}+1
|
extreme 5/(x+8)
|
extreme\:\frac{5}{x+8}
|
extreme g(θ)=5θ-9sin(θ)
|
extreme\:g(θ)=5θ-9\sin(θ)
|
extreme f(x)=9-x,(-1,3)
|
extreme\:f(x)=9-x,(-1,3)
|
extreme f(x)=4xsqrt(x-x^2)
|
extreme\:f(x)=4x\sqrt{x-x^{2}}
|
intercepts of f(x)=-(x+1)^2+3
|
intercepts\:f(x)=-(x+1)^{2}+3
|
extreme x^3+y^3-2xy
|
extreme\:x^{3}+y^{3}-2xy
|
extreme f(x,y)=x^3+y^3+6x^2-9y^2-4
|
extreme\:f(x,y)=x^{3}+y^{3}+6x^{2}-9y^{2}-4
|
extreme f(x)= 1/9 (x^4-4x^3)
|
extreme\:f(x)=\frac{1}{9}(x^{4}-4x^{3})
|
extreme f(x)=x^3+2x^2-x-10
|
extreme\:f(x)=x^{3}+2x^{2}-x-10
|
extreme f(x)=(x^3+1)/x
|
extreme\:f(x)=\frac{x^{3}+1}{x}
|
extreme f(x)=-2x^2+12x
|
extreme\:f(x)=-2x^{2}+12x
|
extreme cos(x)-sin(x)
|
extreme\:\cos(x)-\sin(x)
|
extreme f(x)=(1-x^2)/(x^2+1)
|
extreme\:f(x)=\frac{1-x^{2}}{x^{2}+1}
|
minimum 2t^2+7t+9
|
minimum\:2t^{2}+7t+9
|
extreme f(x)=6xsqrt(16-x^2)
|
extreme\:f(x)=6x\sqrt{16-x^{2}}
|
perpendicular y= 7/4 x-6
|
perpendicular\:y=\frac{7}{4}x-6
|
extreme f(x)=6x^2-40x+50
|
extreme\:f(x)=6x^{2}-40x+50
|
minimum y=(x^2+9)/(x^2-64)
|
minimum\:y=\frac{x^{2}+9}{x^{2}-64}
|
f(x)=5x+8y
|
f(x)=5x+8y
|
minimum (cos(x))/(cos(2x))
|
minimum\:\frac{\cos(x)}{\cos(2x)}
|
extreme f(x)=((e^x)/(5+e^x))
|
extreme\:f(x)=(\frac{e^{x}}{5+e^{x}})
|
extreme f(x,y)=-2x^2+2xy-2x
|
extreme\:f(x,y)=-2x^{2}+2xy-2x
|
extreme (180ln(x)-300)/(x^2)
|
extreme\:\frac{180\ln(x)-300}{x^{2}}
|
extreme f(x,y)=x^2+y^2-4
|
extreme\:f(x,y)=x^{2}+y^{2}-4
|
extreme f(x)=a+2b=53
|
extreme\:f(x)=a+2b=53
|
asymptotes of g(x)=(15x^2)/(3x^2+1)
|
asymptotes\:g(x)=\frac{15x^{2}}{3x^{2}+1}
|
F(x,y)=x^3-4x^2-xy-y^2
|
F(x,y)=x^{3}-4x^{2}-xy-y^{2}
|
extreme f(x)=x^2-4x-7
|
extreme\:f(x)=x^{2}-4x-7
|
extreme f(x,y)=4x^2-8y^2
|
extreme\:f(x,y)=4x^{2}-8y^{2}
|
f(x)=5x+4y
|
f(x)=5x+4y
|
extreme x^4-242x^2-2
|
extreme\:x^{4}-242x^{2}-2
|
extreme f(x)=x(20-2x)(32-2x),0<x<10
|
extreme\:f(x)=x(20-2x)(32-2x),0<x<10
|
extreme f(x)=3|x-1|,0<x<3
|
extreme\:f(x)=3\left|x-1\right|,0<x<3
|
extreme f(x)=(x+3)/(x^2-2x+1)
|
extreme\:f(x)=\frac{x+3}{x^{2}-2x+1}
|
f(x,y)=x^3+y^3+xy
|
f(x,y)=x^{3}+y^{3}+xy
|
extreme f(x)=2+x^{2/5}
|
extreme\:f(x)=2+x^{\frac{2}{5}}
|
critical points of f(x)=x^3-12x+5
|
critical\:points\:f(x)=x^{3}-12x+5
|
extreme x^2-4x+1
|
extreme\:x^{2}-4x+1
|
extreme f(x)=x 4/3 (x-4)
|
extreme\:f(x)=x\frac{4}{3}(x-4)
|
extreme f(x)=x^4-8x^2-6
|
extreme\:f(x)=x^{4}-8x^{2}-6
|
extreme f(x)=x^4-8x^2-7
|
extreme\:f(x)=x^{4}-8x^{2}-7
|