S(v,t)=v*t-v/t*(2t^2)/2
|
S(v,t)=v\cdot\:t-\frac{v}{t}\cdot\:\frac{2t^{2}}{2}
|
extreme f(x)=2x^3-96x-3
|
extreme\:f(x)=2x^{3}-96x-3
|
extreme xln(x/9)-x
|
extreme\:x\ln(\frac{x}{9})-x
|
extreme f(x)=x^3+x^2-6x
|
extreme\:f(x)=x^{3}+x^{2}-6x
|
f(x,y)=x^2-2x+y^2+1
|
f(x,y)=x^{2}-2x+y^{2}+1
|
extreme sqrt((x+3)/(x-2))
|
extreme\:\sqrt{\frac{x+3}{x-2}}
|
domain of 9x+7
|
domain\:9x+7
|
shift f(x)=-cos(1/2 (x-(pi)/2))-2
|
shift\:f(x)=-\cos(\frac{1}{2}(x-\frac{\pi}{2}))-2
|
minimum 3/4 2/5
|
minimum\:\frac{3}{4}\frac{2}{5}
|
extreme f(x)=3-4x-5x^2[-2.4]
|
extreme\:f(x)=3-4x-5x^{2}[-2.4]
|
extreme f(x)=(x+2)/((x+1)(2-x))
|
extreme\:f(x)=\frac{x+2}{(x+1)(2-x)}
|
extreme 4+(9x-36)/(sqrt((x-4)^2+65))
|
extreme\:4+\frac{9x-36}{\sqrt{(x-4)^{2}+65}}
|
extreme f(x)=(-125)/4 x^4+x
|
extreme\:f(x)=\frac{-125}{4}x^{4}+x
|
extreme f(x)=ln(x^2-6x-7)
|
extreme\:f(x)=\ln(x^{2}-6x-7)
|
extreme f(x)=sin(2pix)
|
extreme\:f(x)=\sin(2πx)
|
extreme f(x)=x^2+y+xy
|
extreme\:f(x)=x^{2}+y+xy
|
extreme f(x)=y=2+3x-x^3
|
extreme\:f(x)=y=2+3x-x^{3}
|
extreme f(x)=x^2+9x+9
|
extreme\:f(x)=x^{2}+9x+9
|
periodicity of f(x)=-2sec(x/2)+3
|
periodicity\:f(x)=-2\sec(\frac{x}{2})+3
|
extreme 6xy-x^2y-xy^2
|
extreme\:6xy-x^{2}y-xy^{2}
|
minimum f(x)=2x^3-3x^2-72x+9,-4<= x<= 5
|
minimum\:f(x)=2x^{3}-3x^{2}-72x+9,-4\le\:x\le\:5
|
minimum f(x)=-3x^2+42x-141
|
minimum\:f(x)=-3x^{2}+42x-141
|
extreme f(x)=x^2+9x-2
|
extreme\:f(x)=x^{2}+9x-2
|
extreme f(x)=x^4-4x=x^2(x^2-4)
|
extreme\:f(x)=x^{4}-4x=x^{2}(x^{2}-4)
|
extreme f(x)=x^{2/3}*(4-x^2)
|
extreme\:f(x)=x^{\frac{2}{3}}\cdot\:(4-x^{2})
|
extreme 3x^2+2y^2-4y
|
extreme\:3x^{2}+2y^{2}-4y
|
extreme f(x)=102t+0.5t^2-t^3
|
extreme\:f(x)=102t+0.5t^{2}-t^{3}
|
extreme f(x)=x^3-8x^2-12x+5
|
extreme\:f(x)=x^{3}-8x^{2}-12x+5
|
inverse of f(x)=sqrt(x-2)+4
|
inverse\:f(x)=\sqrt{x-2}+4
|
extreme f(x)=x^3-8x^2-12x+9
|
extreme\:f(x)=x^{3}-8x^{2}-12x+9
|
f(x,y)=(2x-x^{(2)})(2y-y^{(2)})
|
f(x,y)=(2x-x^{(2)})(2y-y^{(2)})
|
extreme f(x)=8+(9+7x)^{2/7}
|
extreme\:f(x)=8+(9+7x)^{\frac{2}{7}}
|
f(x)=6x+7y
|
f(x)=6x+7y
|
extreme f(x,y)=xy-3x^3y^2
|
extreme\:f(x,y)=xy-3x^{3}y^{2}
|
extreme f(x,y,z)=x^4+y^4-4xy
|
extreme\:f(x,y,z)=x^{4}+y^{4}-4xy
|
extreme f(x)=40000-2x^2
|
extreme\:f(x)=40000-2x^{2}
|
extreme f(x)=x^2+y^2+2x-6y-3
|
extreme\:f(x)=x^{2}+y^{2}+2x-6y-3
|
extreme f(x)=x(25-2x)(48/2-x)
|
extreme\:f(x)=x(25-2x)(\frac{48}{2}-x)
|
extreme f(x)=x^3-y^3+3x^2+3y^2-9x+5
|
extreme\:f(x)=x^{3}-y^{3}+3x^{2}+3y^{2}-9x+5
|
domain of f(x)=(x^2-8x)^2-8(x^2-8x)
|
domain\:f(x)=(x^{2}-8x)^{2}-8(x^{2}-8x)
|
extreme f(x)= 4/3 x^3-25/2 x^2+6x+4
|
extreme\:f(x)=\frac{4}{3}x^{3}-\frac{25}{2}x^{2}+6x+4
|
f(xy)=x^2y-15xy^2+12y
|
f(xy)=x^{2}y-15xy^{2}+12y
|
extreme f(x)=12x^2-18x
|
extreme\:f(x)=12x^{2}-18x
|
extreme-6x^5+180x^3-1350x+14
|
extreme\:-6x^{5}+180x^{3}-1350x+14
|
extreme ln(1-3x)
|
extreme\:\ln(1-3x)
|
extreme ln(3x^2+12)
|
extreme\:\ln(3x^{2}+12)
|
(((y+1)b)/p)p+by
|
(\frac{(y+1)b}{p})p+by
|
f(x,y)=-2x^2+3y^2
|
f(x,y)=-2x^{2}+3y^{2}
|
f(x,y)=x^3+y^2+xy
|
f(x,y)=x^{3}+y^{2}+xy
|
inflection points of f(x)=(x^2)/(4x^2+7)
|
inflection\:points\:f(x)=\frac{x^{2}}{4x^{2}+7}
|
extreme f(x)=4x^3+15x^2-18x+7
|
extreme\:f(x)=4x^{3}+15x^{2}-18x+7
|
extreme f(x)=54x^4-8x
|
extreme\:f(x)=54x^{4}-8x
|
extreme (x^3)/(x^2+x-2)
|
extreme\:\frac{x^{3}}{x^{2}+x-2}
|
extreme f(x)=x^4+18x^2+5,-6<= x<= 6
|
extreme\:f(x)=x^{4}+18x^{2}+5,-6\le\:x\le\:6
|
extreme ((x-1))/((x^2-x+1))
|
extreme\:\frac{(x-1)}{(x^{2}-x+1)}
|
f(x)=(x^2-4y^2)e^{1-x^2-y^2}
|
f(x)=(x^{2}-4y^{2})e^{1-x^{2}-y^{2}}
|
extreme f(x,y)=x^3-3x+y^2-y^4
|
extreme\:f(x,y)=x^{3}-3x+y^{2}-y^{4}
|
minimum 6x^4+16x^3
|
minimum\:6x^{4}+16x^{3}
|
extreme f(x)=(x-10)^{1/3}
|
extreme\:f(x)=(x-10)^{\frac{1}{3}}
|
minimum y=(2x-1)^2
|
minimum\:y=(2x-1)^{2}
|
symmetry (x^5)/(36-x^2)
|
symmetry\:\frac{x^{5}}{36-x^{2}}
|
extreme f(x)=3x+(147)/x
|
extreme\:f(x)=3x+\frac{147}{x}
|
f(x,y)=x^{(2)}+y^{(2)}+x^{(2)}y+4
|
f(x,y)=x^{(2)}+y^{(2)}+x^{(2)}y+4
|
extreme 2cos(x)+2sin(x)
|
extreme\:2\cos(x)+2\sin(x)
|
extreme f(x)= 8/(x^2-4)
|
extreme\:f(x)=\frac{8}{x^{2}-4}
|
extreme (3(x-7)(x-6))/(3(x-7))
|
extreme\:\frac{3(x-7)(x-6)}{3(x-7)}
|
extreme f(x)=x^3+x+1
|
extreme\:f(x)=x^{3}+x+1
|
minimum 1/(x^2+1)
|
minimum\:\frac{1}{x^{2}+1}
|
extreme f(x)=40x-3x^2
|
extreme\:f(x)=40x-3x^{2}
|
extreme f(x)=-3x^2-5x-4
|
extreme\:f(x)=-3x^{2}-5x-4
|
extreme f(x)=-8x^3+110x^2-143x+590
|
extreme\:f(x)=-8x^{3}+110x^{2}-143x+590
|
asymptotes of f(x)=x^2+3x+4
|
asymptotes\:f(x)=x^{2}+3x+4
|
extreme f(x)=x^4+4x^3+15,-4<= x<= 1
|
extreme\:f(x)=x^{4}+4x^{3}+15,-4\le\:x\le\:1
|
extreme f(x)=cos(x)[-pi/4 , pi/4 ]
|
extreme\:f(x)=\cos(x)[-\frac{π}{4},\frac{π}{4}]
|
extreme f(x)=x^2-x+9/4
|
extreme\:f(x)=x^{2}-x+\frac{9}{4}
|
extreme f(x)=(12)/(6-x)-x/3+8
|
extreme\:f(x)=\frac{12}{6-x}-\frac{x}{3}+8
|
extreme y=-2x^2+12x-8
|
extreme\:y=-2x^{2}+12x-8
|
extreme f(x)=x^3-3x^2-9x+6
|
extreme\:f(x)=x^{3}-3x^{2}-9x+6
|
f(x,y)=ln(4x^2+9y^2-36)
|
f(x,y)=\ln(4x^{2}+9y^{2}-36)
|
minimum 2x^4+2y^4-xy
|
minimum\:2x^{4}+2y^{4}-xy
|
extreme x^3-x^2-x+2
|
extreme\:x^{3}-x^{2}-x+2
|
extreme x^3-x^2-x+3
|
extreme\:x^{3}-x^{2}-x+3
|
inverse of f(x)=x^2+6x-16
|
inverse\:f(x)=x^{2}+6x-16
|
extreme x^3-x^2-x+4
|
extreme\:x^{3}-x^{2}-x+4
|
extreme x^3-x^2-x+7
|
extreme\:x^{3}-x^{2}-x+7
|
f(x)=x^5y^2-3x^3+10+5y^3-xy
|
f(x)=x^{5}y^{2}-3x^{3}+10+5y^{3}-xy
|
extreme f(x)=(0.2t)/(t^2+59)
|
extreme\:f(x)=\frac{0.2t}{t^{2}+59}
|
extreme (18)/x+3x^2
|
extreme\:\frac{18}{x}+3x^{2}
|
extreme f(x)=3x^2-4x+12
|
extreme\:f(x)=3x^{2}-4x+12
|
extreme f(x)=x(-(2x)/3+4)
|
extreme\:f(x)=x(-\frac{2x}{3}+4)
|
f(x,y)=2x^2+3y^2+2xy-6x-8y+11
|
f(x,y)=2x^{2}+3y^{2}+2xy-6x-8y+11
|
f(x,y)=x^2-2xy+1/3 y^3-4y
|
f(x,y)=x^{2}-2xy+\frac{1}{3}y^{3}-4y
|
range of (x+3)/(x-2)
|
range\:\frac{x+3}{x-2}
|
extreme f(x)=4x^5-25x^4+40x^3-4[-1.4]
|
extreme\:f(x)=4x^{5}-25x^{4}+40x^{3}-4[-1.4]
|
extreme f(x)=-1/2 x^2+15x-51
|
extreme\:f(x)=-\frac{1}{2}x^{2}+15x-51
|
extreme f(x)=(x^2-1/2)e^{-2x}
|
extreme\:f(x)=(x^{2}-\frac{1}{2})e^{-2x}
|
extreme f(x)=x^2+y^2-16=0
|
extreme\:f(x)=x^{2}+y^{2}-16=0
|
extreme 2x^2-2x^2y+y^2
|
extreme\:2x^{2}-2x^{2}y+y^{2}
|
extreme x^2+x+2
|
extreme\:x^{2}+x+2
|
extreme (x-5)/(x^2-18x+81)
|
extreme\:\frac{x-5}{x^{2}-18x+81}
|