extreme points of f(x)=x^2(x-a)
|
extreme\:points\:f(x)=x^{2}(x-a)
|
inverse of e^{x-2}
|
inverse\:e^{x-2}
|
parallel y=(-2)/3 x+13
|
parallel\:y=\frac{-2}{3}x+13
|
domain of f(x)=sqrt(x-1)-2
|
domain\:f(x)=\sqrt{x-1}-2
|
intercepts of (3x^2-10x+8)/(x-5)
|
intercepts\:\frac{3x^{2}-10x+8}{x-5}
|
asymptotes of f(x)=(x^2-4x-5)/(x-3)
|
asymptotes\:f(x)=\frac{x^{2}-4x-5}{x-3}
|
asymptotes of f(x)=(x^2-25)/(x+5)
|
asymptotes\:f(x)=\frac{x^{2}-25}{x+5}
|
critical points of f(x)=x^{2/3}(x+3)
|
critical\:points\:f(x)=x^{\frac{2}{3}}(x+3)
|
domain of f(x)= 1/(x^6)
|
domain\:f(x)=\frac{1}{x^{6}}
|
domain of 1/(e^x-2)
|
domain\:\frac{1}{e^{x}-2}
|
domain of f(x)=(x+5)/(x^2-4)
|
domain\:f(x)=\frac{x+5}{x^{2}-4}
|
asymptotes of f(x)= 1/(x^2-3x)
|
asymptotes\:f(x)=\frac{1}{x^{2}-3x}
|
domain of f(x)=sqrt(1+x)+sqrt(1-x)
|
domain\:f(x)=\sqrt{1+x}+\sqrt{1-x}
|
domain of = 1/x
|
domain\:=\frac{1}{x}
|
extreme points of f(x)=x^2-9
|
extreme\:points\:f(x)=x^{2}-9
|
symmetry y=x^2-2x-63
|
symmetry\:y=x^{2}-2x-63
|
inflection points of f(x)=x^3+12x+5
|
inflection\:points\:f(x)=x^{3}+12x+5
|
inverse of f(x)=6^x
|
inverse\:f(x)=6^{x}
|
midpoint (0,5)(-2, 1/3)
|
midpoint\:(0,5)(-2,\frac{1}{3})
|
domain of f(x)=sqrt(4x-32)
|
domain\:f(x)=\sqrt{4x-32}
|
intercepts of (-2x-7)/(3x-1)
|
intercepts\:\frac{-2x-7}{3x-1}
|
parallel 3y=-2x+6,\at (2,2)
|
parallel\:3y=-2x+6,\at\:(2,2)
|
domain of f(x)= 2/(sqrt(x-3)-1)
|
domain\:f(x)=\frac{2}{\sqrt{x-3}-1}
|
domain of f(x)=sqrt(x^2-5)
|
domain\:f(x)=\sqrt{x^{2}-5}
|
parity (sin(2x))/(x+tan(8x))
|
parity\:\frac{\sin(2x)}{x+\tan(8x)}
|
symmetry f(x)=5x^5-7x^3
|
symmetry\:f(x)=5x^{5}-7x^{3}
|
inverse of f(x)=sqrt(x+2)-5
|
inverse\:f(x)=\sqrt{x+2}-5
|
slope of 4x+2y=20
|
slope\:4x+2y=20
|
asymptotes of f(x)=(x^2-36)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}-36}{x-6}
|
asymptotes of f(x)=((2x-3))/(x+4)
|
asymptotes\:f(x)=\frac{(2x-3)}{x+4}
|
intercepts of (x-3)/(x^2-5x+6)
|
intercepts\:\frac{x-3}{x^{2}-5x+6}
|
asymptotes of (520e^{5x})/(7+e^{5x)}
|
asymptotes\:\frac{520e^{5x}}{7+e^{5x}}
|
range of f(x)=(1/2)^{(x-3)}
|
range\:f(x)=(\frac{1}{2})^{(x-3)}
|
inverse of f(x)=x^2+12x+32
|
inverse\:f(x)=x^{2}+12x+32
|
range of f(x)=(2x+3)/4
|
range\:f(x)=(2x+3)/4
|
slope intercept of-5x-6=3y
|
slope\:intercept\:-5x-6=3y
|
domain of x
|
domain\:x
|
inverse of f(x)=\sqrt[3]{4x+5}
|
inverse\:f(x)=\sqrt[3]{4x+5}
|
extreme points of f(x)=xsqrt(x+1)
|
extreme\:points\:f(x)=x\sqrt{x+1}
|
range of x^2-8x+7
|
range\:x^{2}-8x+7
|
extreme points of f(x)=xsqrt(64-x^2)
|
extreme\:points\:f(x)=x\sqrt{64-x^{2}}
|
intercepts of f(x)=((x^2-1))/((2x))
|
intercepts\:f(x)=\frac{(x^{2}-1)}{(2x)}
|
parity f(x)=sqrt(7)x
|
parity\:f(x)=\sqrt{7}x
|
range of y=sqrt(x-8)
|
range\:y=\sqrt{x-8}
|
domain of 6/x
|
domain\:\frac{6}{x}
|
intercepts of x^2-2x+5
|
intercepts\:x^{2}-2x+5
|
extreme points of f(x)=5
|
extreme\:points\:f(x)=5
|
domain of y= 1/(sqrt(x))
|
domain\:y=\frac{1}{\sqrt{x}}
|
slope intercept of 1/2
|
slope\:intercept\:\frac{1}{2}
|
domain of f(x)=(x^2-4x)^2-4(x^2-4x)
|
domain\:f(x)=(x^{2}-4x)^{2}-4(x^{2}-4x)
|
inverse of f(x)=x-1/x
|
inverse\:f(x)=x-\frac{1}{x}
|
asymptotes of (2x(x-1)^2)/((x+1)^3)
|
asymptotes\:\frac{2x(x-1)^{2}}{(x+1)^{3}}
|
intercepts of (x^2-2x-3)/x
|
intercepts\:\frac{x^{2}-2x-3}{x}
|
intercepts of f(x)= 1/(x-6)
|
intercepts\:f(x)=\frac{1}{x-6}
|
distance (3,4.6904)(0,0)
|
distance\:(3,4.6904)(0,0)
|
range of f(x)=(x^2-x-2)/(x-3)
|
range\:f(x)=\frac{x^{2}-x-2}{x-3}
|
extreme points of x^3+x
|
extreme\:points\:x^{3}+x
|
extreme points of f(x)=sqrt(6x^3+8x^2)
|
extreme\:points\:f(x)=\sqrt{6x^{3}+8x^{2}}
|
intercepts of f(x)=-5x^2-30x-42
|
intercepts\:f(x)=-5x^{2}-30x-42
|
line (-1,4),(1,-6)
|
line\:(-1,4),(1,-6)
|
asymptotes of f(x)=(x^3+5)/(x^5+2)
|
asymptotes\:f(x)=\frac{x^{3}+5}{x^{5}+2}
|
range of f(x)=-1/3 sqrt(x)
|
range\:f(x)=-\frac{1}{3}\sqrt{x}
|
intercepts of f(x)=4x^4+12x^3-40x^2
|
intercepts\:f(x)=4x^{4}+12x^{3}-40x^{2}
|
extreme points of (2x)/3+(x+1)^{2/3}
|
extreme\:points\:\frac{2x}{3}+(x+1)^{\frac{2}{3}}
|
inverse of f(x)=\sqrt[4]{24-8x}
|
inverse\:f(x)=\sqrt[4]{24-8x}
|
inverse of f(x)=(2x^3-6)/9
|
inverse\:f(x)=\frac{2x^{3}-6}{9}
|
domain of f(x)=(sqrt(x+7))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x+7}}{x-5}
|
inverse of f(x)=(x+1)^3-4
|
inverse\:f(x)=(x+1)^{3}-4
|
intercepts of f(x)=2(t-1)(t-2)(t-3)
|
intercepts\:f(x)=2(t-1)(t-2)(t-3)
|
amplitude of 3sin((2pitheta)/5)
|
amplitude\:3\sin(\frac{2\pi\theta}{5})
|
asymptotes of (x^2-x-12)/(2x-8)
|
asymptotes\:\frac{x^{2}-x-12}{2x-8}
|
line (-2,1)(4,9)
|
line\:(-2,1)(4,9)
|
inverse of (x-4)/(3x+7)
|
inverse\:\frac{x-4}{3x+7}
|
inverse of f(x)=\sqrt[5]{x}+4
|
inverse\:f(x)=\sqrt[5]{x}+4
|
shift f(x)=2sin(pi x+3)-3
|
shift\:f(x)=2\sin(\pi\:x+3)-3
|
domain of f(x)=sqrt((3x+4)/(2-x))
|
domain\:f(x)=\sqrt{\frac{3x+4}{2-x}}
|
range of x^2-6x+5
|
range\:x^{2}-6x+5
|
range of (x+2)/(x-3)
|
range\:\frac{x+2}{x-3}
|
inverse of f(x)= 7/x
|
inverse\:f(x)=\frac{7}{x}
|
periodicity of y=cos(5x)
|
periodicity\:y=\cos(5x)
|
extreme points of f(x)= 1/3 x^3-x^2-8x+1
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-x^{2}-8x+1
|
domain of x^2+7
|
domain\:x^{2}+7
|
domain of-(31)/((6+t)^2)
|
domain\:-\frac{31}{(6+t)^{2}}
|
parity y=x^{x^x}
|
parity\:y=x^{x^{x}}
|
intercepts of f(x)=(3x)/(x-4)
|
intercepts\:f(x)=\frac{3x}{x-4}
|
domain of f(x)=sqrt(2x+5)
|
domain\:f(x)=\sqrt{2x+5}
|
symmetry y=x^2+2x+4
|
symmetry\:y=x^{2}+2x+4
|
inverse of f(x)=8x^3-1
|
inverse\:f(x)=8x^{3}-1
|
asymptotes of-2log_{5}(x+2)+3
|
asymptotes\:-2\log_{5}(x+2)+3
|
inverse of f(x)=-5x-10
|
inverse\:f(x)=-5x-10
|
domain of f(x)=((4x+6))/5
|
domain\:f(x)=\frac{(4x+6)}{5}
|
intercepts of x/(x^2-1)
|
intercepts\:\frac{x}{x^{2}-1}
|
line m=-1/10 ,\at (4, 1/2)
|
line\:m=-\frac{1}{10},\at\:(4,\frac{1}{2})
|
inflection points of f(x)=-x^4-6x^3+2x-8
|
inflection\:points\:f(x)=-x^{4}-6x^{3}+2x-8
|
domain of x^2-8x+9
|
domain\:x^{2}-8x+9
|
inverse of f(x)=(25)/(x^2)
|
inverse\:f(x)=\frac{25}{x^{2}}
|
asymptotes of f(x)=(5x^6-8)/(3x^6-11x^2)
|
asymptotes\:f(x)=\frac{5x^{6}-8}{3x^{6}-11x^{2}}
|
domain of f(x)= x/(5x-2)
|
domain\:f(x)=\frac{x}{5x-2}
|
midpoint (-1,2)(4,0)
|
midpoint\:(-1,2)(4,0)
|
line m=3,\at (2,3)
|
line\:m=3,\at\:(2,3)
|