line (4,4)(1,6)
|
line\:(4,4)(1,6)
|
f(x)=ln(sin(2x))
|
f(x)=\ln(\sin(2x))
|
f(x)=(x+3)/(x-4)
|
f(x)=\frac{x+3}{x-4}
|
f(θ)=cos^3(θ)
|
f(θ)=\cos^{3}(θ)
|
f(x)=x^4+4x^3-2
|
f(x)=x^{4}+4x^{3}-2
|
f(x)=x^2-4x+11
|
f(x)=x^{2}-4x+11
|
f(t)=t^2e^t
|
f(t)=t^{2}e^{t}
|
f(x)=x^3-2x^2+x+2
|
f(x)=x^{3}-2x^{2}+x+2
|
f(x)=xarcsin(x)+sqrt(1-x^2)
|
f(x)=x\arcsin(x)+\sqrt{1-x^{2}}
|
f(x)=x^3-x^2-8x+12
|
f(x)=x^{3}-x^{2}-8x+12
|
f(x)=sqrt(4-2x)
|
f(x)=\sqrt{4-2x}
|
shift f(x)=8cos(pi2x-pi4)-3
|
shift\:f(x)=8\cos(\pi2x-\pi4)-3
|
y=cos^2(3x)
|
y=\cos^{2}(3x)
|
f(x)=(x^2-4)/(x^2-5x+6)
|
f(x)=\frac{x^{2}-4}{x^{2}-5x+6}
|
f(x)=(1/3)^{-x}
|
f(x)=(\frac{1}{3})^{-x}
|
f(x)=|x-3|-1
|
f(x)=\left|x-3\right|-1
|
f(x)=(x^2-9)/x
|
f(x)=\frac{x^{2}-9}{x}
|
y= 4/5 x-3
|
y=\frac{4}{5}x-3
|
f(t)=-t^2
|
f(t)=-t^{2}
|
f(x)=2x^3+11x+4
|
f(x)=2x^{3}+11x+4
|
f(x)=(sin(x))/(sin(x)+cos(x))
|
f(x)=\frac{\sin(x)}{\sin(x)+\cos(x)}
|
f(x)=(x-3)/(x^2)
|
f(x)=\frac{x-3}{x^{2}}
|
inverse of f(x)=500(0.04-x^2)
|
inverse\:f(x)=500(0.04-x^{2})
|
y=sin(ln(x))
|
y=\sin(\ln(x))
|
y=3sin(4x)
|
y=3\sin(4x)
|
f(x)=(x-5)^2+3
|
f(x)=(x-5)^{2}+3
|
f(x)=sqrt(2/x)
|
f(x)=\sqrt{\frac{2}{x}}
|
f(x)=4^0
|
f(x)=4^{0}
|
f(x)=sqrt(x^2-6)
|
f(x)=\sqrt{x^{2}-6}
|
f(t)=arctan(t)
|
f(t)=\arctan(t)
|
f(x)=sqrt(2+5x)
|
f(x)=\sqrt{2+5x}
|
y=-3/5 x-2
|
y=-\frac{3}{5}x-2
|
f(t)=cosh(5t)sin(2t)
|
f(t)=\cosh(5t)\sin(2t)
|
line (4,9)(-4,7,)
|
line\:(4,9)(-4,7,)
|
f(x)=3-sqrt(x)
|
f(x)=3-\sqrt{x}
|
f(x)= 3/2
|
f(x)=\frac{3}{2}
|
y=((4-x)^3)/((3+2x)^2)
|
y=\frac{(4-x)^{3}}{(3+2x)^{2}}
|
g(x)=3^x+2
|
g(x)=3^{x}+2
|
f(x)=-2x^2+x-1
|
f(x)=-2x^{2}+x-1
|
y=x^2sqrt(x+1)
|
y=x^{2}\sqrt{x+1}
|
f(x)=7x-125-6x^4+14x^2
|
f(x)=7x-125-6x^{4}+14x^{2}
|
f(x)=-x^2-x+2
|
f(x)=-x^{2}-x+2
|
f(x)=x^{3x}
|
f(x)=x^{3x}
|
y=ln(x/(x+1))
|
y=\ln(\frac{x}{x+1})
|
slope of y-2=0
|
slope\:y-2=0
|
y= 4/3 x-3
|
y=\frac{4}{3}x-3
|
f(x)=8x+15
|
f(x)=8x+15
|
f(x)=x^3e^{x^2}
|
f(x)=x^{3}e^{x^{2}}
|
f(n)=n+4
|
f(n)=n+4
|
f(x)=(4x+18)/(-3x)
|
f(x)=\frac{4x+18}{-3x}
|
y=7e^{3x}+2x
|
y=7e^{3x}+2x
|
f(n)=1-n^3
|
f(n)=1-n^{3}
|
f(x)=sin(pi/4+x)
|
f(x)=\sin(\frac{π}{4}+x)
|
f(x)=x*e^{-x}
|
f(x)=x\cdot\:e^{-x}
|
f(x)=(x-1)(x+3)
|
f(x)=(x-1)(x+3)
|
inverse of f(x)=(3x+2)/(2x+5)
|
inverse\:f(x)=\frac{3x+2}{2x+5}
|
y=sin(cos(x))
|
y=\sin(\cos(x))
|
f(x)=-12x
|
f(x)=-12x
|
f(-2)=4x+10
|
f(-2)=4x+10
|
y=2(x+3)^2-8
|
y=2(x+3)^{2}-8
|
y=(2x^2+2x+3)/(4x^2-4x)
|
y=\frac{2x^{2}+2x+3}{4x^{2}-4x}
|
f(x)=(x^4)/2
|
f(x)=\frac{x^{4}}{2}
|
y=x^3-3x^2-1
|
y=x^{3}-3x^{2}-1
|
f(x)= 1/(2x+4)
|
f(x)=\frac{1}{2x+4}
|
f(x)=2x^3-x+4
|
f(x)=2x^{3}-x+4
|
f(x)=(x+4/3)(x+1/2)
|
f(x)=(x+\frac{4}{3})(x+\frac{1}{2})
|
perpendicular 2x+5y=10
|
perpendicular\:2x+5y=10
|
slope of 3x+2y=8
|
slope\:3x+2y=8
|
dx
|
dx
|
g(x)=sqrt(2-x)
|
g(x)=\sqrt{2-x}
|
f(x)=(x^2-4)^{5/3}
|
f(x)=(x^{2}-4)^{\frac{5}{3}}
|
f(a)=atan(5/12)
|
f(a)=a\tan(\frac{5}{12})
|
f(x)=x^3-3x^2-x-5
|
f(x)=x^{3}-3x^{2}-x-5
|
h(x)=-3x^5+5x^3
|
h(x)=-3x^{5}+5x^{3}
|
f(x)=x^6-64
|
f(x)=x^{6}-64
|
y=ln(3x)
|
y=\ln(3x)
|
f(x)=3x^2sqrt(2x^3+4)
|
f(x)=3x^{2}\sqrt{2x^{3}+4}
|
f(x)=ln(tanh(2x))
|
f(x)=\ln(\tanh(2x))
|
f(x)= 2/(2x+1)
|
f(x)=\frac{2}{2x+1}
|
asymptotes of f(x)=(9+x^4)/(x^2-x^4)
|
asymptotes\:f(x)=\frac{9+x^{4}}{x^{2}-x^{4}}
|
f(x)=x^3+x^2-5x-5
|
f(x)=x^{3}+x^{2}-5x-5
|
f(y)= 1/(y^2)
|
f(y)=\frac{1}{y^{2}}
|
f(a)=a^'
|
f(a)=a^{\prime\:}
|
f(x)=sin(x-2)
|
f(x)=\sin(x-2)
|
f(x)=(x^2-1)/(x^2-3x+2)
|
f(x)=\frac{x^{2}-1}{x^{2}-3x+2}
|
y=(-3)/(\sqrt[3]{x^2)}
|
y=\frac{-3}{\sqrt[3]{x^{2}}}
|
f(n)=sqrt(n+1)-sqrt(n)
|
f(n)=\sqrt{n+1}-\sqrt{n}
|
y=(x+3)^2+1
|
y=(x+3)^{2}+1
|
y=(x+3)^2+4
|
y=(x+3)^{2}+4
|
f(x)=-7x^2+8x+2
|
f(x)=-7x^{2}+8x+2
|
inflection points of f(x)=7x^2ln(x/4)
|
inflection\:points\:f(x)=7x^{2}\ln(\frac{x}{4})
|
y=sin(7x)
|
y=\sin(7x)
|
f(x)=|x^2+1|
|
f(x)=\left|x^{2}+1\right|
|
x=ln(t)
|
x=\ln(t)
|
f(x)=6x-9
|
f(x)=6x-9
|
y=xsin(x)+cos(x)
|
y=x\sin(x)+\cos(x)
|
f(x)=ax
|
f(x)=ax
|
f(x)= x/(x^2-x)
|
f(x)=\frac{x}{x^{2}-x}
|
f(x)=5-7x-4x^2
|
f(x)=5-7x-4x^{2}
|
f(x)=4+sqrt(x-2)
|
f(x)=4+\sqrt{x-2}
|