Upgrade to Pro
Continue to site
Solutions
Graphing
Practice
New
Geometry
Calculators
Notebook
Groups
Cheat Sheets
Sign in
Upgrade
Upgrade
Account Details
Login Options
Account Management
Settings
Subscription
Logout
No new notifications
en
English
Español
Português
Français
Deutsch
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Popular Functions & Graphing Problems
f(x)= x/(x^2-2)
f(x)=\frac{x}{x^{2}-2}
domain of f(x)= 8/(4-sqrt(x))
domain\:f(x)=\frac{8}{4-\sqrt{x}}
f(x)=4x-10
f(x)=4x-10
f(t_{0})=t_{0}
f(t_{0})=t_{0}
f(x)=(2x^2+2)^{1/x}
f(x)=(2x^{2}+2)^{\frac{1}{x}}
f(x)=x^3+3x^2-9x
f(x)=x^{3}+3x^{2}-9x
f(x)=x^2+7x-3
f(x)=x^{2}+7x-3
f(x)=x^2+7x+3
f(x)=x^{2}+7x+3
f(x)=\sqrt[3]{x-6}
f(x)=\sqrt[3]{x-6}
f(x)=x^2+8x+64
f(x)=x^{2}+8x+64
f(x)=-2x^2-12x-13
f(x)=-2x^{2}-12x-13
g(x)=4x^2+3x-1
g(x)=4x^{2}+3x-1
symmetry 4x^2
symmetry\:4x^{2}
y=arcsin(cos(x))
y=\arcsin(\cos(x))
f(x)=(x+3)/(x^2)
f(x)=\frac{x+3}{x^{2}}
f(n)=n^2+2n+1
f(n)=n^{2}+2n+1
f(t)=cos^2(t)+4e^{2t}-3t^2
f(t)=\cos^{2}(t)+4e^{2t}-3t^{2}
g(x)=5
g(x)=5
f(x)=5sin(pix-4pi)
f(x)=5\sin(πx-4π)
g(x)=5x+1
g(x)=5x+1
f(x)=arccos(sqrt(x))
f(x)=\arccos(\sqrt{x})
f(x)=5^{-2}
f(x)=5^{-2}
f(x)=6sec(x^2)
f(x)=6\sec(x^{2})
domain of f(x)=log_{5}(-x)
domain\:f(x)=\log_{5}(-x)
f(x)=5^2
f(x)=5^{2}
y=7x-9
y=7x-9
f(x)=x^2+6x-16
f(x)=x^{2}+6x-16
y=-x^2+4x+3
y=-x^{2}+4x+3
f(x)=arcsin(x-1)
f(x)=\arcsin(x-1)
f(y)=2y-3
f(y)=2y-3
f(n)=3n^2+5n-2
f(n)=3n^{2}+5n-2
f(x)=x^2-11
f(x)=x^{2}-11
f(m)=m^2-25
f(m)=m^{2}-25
f(x)=10x^2+9x-4
f(x)=10x^{2}+9x-4
domain of y= 2/(x-3)
domain\:y=\frac{2}{x-3}
f(x)=x^{1/3}(x+4)
f(x)=x^{\frac{1}{3}}(x+4)
f(x)=x^{7/3}
f(x)=x^{\frac{7}{3}}
y=2(x-4)^2+5
y=2(x-4)^{2}+5
y=-2x^2+4x
y=-2x^{2}+4x
f(x)=(x^2-3x+2)/(2x^2+5x-1)
f(x)=\frac{x^{2}-3x+2}{2x^{2}+5x-1}
f(x)=4cos^2(x)-3
f(x)=4\cos^{2}(x)-3
f(x)=4cos^2(x)-1
f(x)=4\cos^{2}(x)-1
P(s)=-10s^2+700s-6000
P(s)=-10s^{2}+700s-6000
f(x)=-3x^2+1
f(x)=-3x^{2}+1
f(x)=(x^2-4x-5)/(x-3)
f(x)=\frac{x^{2}-4x-5}{x-3}
slope intercept of 3x+2y=4
slope\:intercept\:3x+2y=4
y=x^2-4x-10
y=x^{2}-4x-10
f(x)=-2x^2+8x+5
f(x)=-2x^{2}+8x+5
f(x)=e^{-x}-2
f(x)=e^{-x}-2
f(x)=e^{-x}-x
f(x)=e^{-x}-x
f(x)=6sin^2(x)
f(x)=6\sin^{2}(x)
y=x^3-3x+5
y=x^{3}-3x+5
f(x)=3x^2-5x+11
f(x)=3x^{2}-5x+11
f(x)=(x-5)^3
f(x)=(x-5)^{3}
y=x^3+6x^2+9x
y=x^{3}+6x^{2}+9x
f(x)=2x^2+3x+7
f(x)=2x^{2}+3x+7
extreme points of f(x)=e^x
extreme\:points\:f(x)=e^{x}
f(x)=x^2cos((x^2+2x)/6)
f(x)=x^{2}\cos(\frac{x^{2}+2x}{6})
f(a)=cos^2(a)
f(a)=\cos^{2}(a)
f(x)=3^0
f(x)=3^{0}
f(x)=(x+1)/(x^2+x+1)
f(x)=\frac{x+1}{x^{2}+x+1}
f(x)=2x^2+6x+3
f(x)=2x^{2}+6x+3
f(t)=e^{-2t}tcos(3t)
f(t)=e^{-2t}t\cos(3t)
f(x)=x^2+4x-10
f(x)=x^{2}+4x-10
f(x)=x^2+4x+11
f(x)=x^{2}+4x+11
f(x)=log_{3}(x-1)+2
f(x)=\log_{3}(x-1)+2
f(x)=2x^2-x+6
f(x)=2x^{2}-x+6
intercepts of f(x)=-4x+7=2y-3
intercepts\:f(x)=-4x+7=2y-3
f(x)=2(x-3)^2+1
f(x)=2(x-3)^{2}+1
f(x)=4cos(x^2)
f(x)=4\cos(x^{2})
y=0.5x+1
y=0.5x+1
f(x)= 1/(4-x)
f(x)=\frac{1}{4-x}
y=xarctan(sqrt(x))
y=x\arctan(\sqrt{x})
f(x)=-(x+5)^2+4
f(x)=-(x+5)^{2}+4
f(x)= 5/(x^3)
f(x)=\frac{5}{x^{3}}
f(x)=3x^2-5x-4
f(x)=3x^{2}-5x-4
f(x)=(x+2)^2-9
f(x)=(x+2)^{2}-9
y= x/(1+x)
y=\frac{x}{1+x}
domain of f(x)=sqrt(5x-35)
domain\:f(x)=\sqrt{5x-35}
domain of sqrt(x^2-6x)
domain\:\sqrt{x^{2}-6x}
f(x)=sqrt(1.5-3x)
f(x)=\sqrt{1.5-3x}
f(x)=cos(2x)+1
f(x)=\cos(2x)+1
f(x)=x(x-2)^2
f(x)=x(x-2)^{2}
f(x)=x^2-8x+64
f(x)=x^{2}-8x+64
f(j)=j^{103}+2j^2
f(j)=j^{103}+2j^{2}
f(x)= 1/((1+e^x)^2)
f(x)=\frac{1}{(1+e^{x})^{2}}
f(x)=x^3+12x^2+45x-52
f(x)=x^{3}+12x^{2}+45x-52
f(x)=1^x
f(x)=1^{x}
f(x)=5e^{-x}
f(x)=5e^{-x}
y=150+(100x)/(5000)
y=150+\frac{100x}{5000}
domain of-3x+3
domain\:-3x+3
y=x^2+5x-24
y=x^{2}+5x-24
y=1x
y=1x
f(x)=3x^2+4x+4
f(x)=3x^{2}+4x+4
f(x)=(3x-2x^2)(5+4x)
f(x)=(3x-2x^{2})(5+4x)
f(x)=log_{3}(x+1)-1
f(x)=\log_{3}(x+1)-1
y=-1.5x+3
y=-1.5x+3
f(x)=3^{-x}+2
f(x)=3^{-x}+2
f(x)=sin(x)-sin(2x)
f(x)=\sin(x)-\sin(2x)
y=x^3+x^2-12x
y=x^{3}+x^{2}-12x
1
..
831
832
833
834
835
836
837
..
1339
We want your feedback
(optional)
(optional)
Please add a message.
Message received. Thanks for the feedback.
Cancel
Send
Generating PDF...
Feedback