extreme f(x)=sqrt(2x-x^2)
|
extreme\:f(x)=\sqrt{2x-x^{2}}
|
extreme f(x)=(x^2)/((x^2-1))
|
extreme\:f(x)=\frac{x^{2}}{(x^{2}-1)}
|
extreme f(x)=3x^2-4x+5
|
extreme\:f(x)=3x^{2}-4x+5
|
extreme f(x)=2x-3x^{2/3},-1<= x<= 3
|
extreme\:f(x)=2x-3x^{\frac{2}{3}},-1\le\:x\le\:3
|
extreme x(1-x^2)^2
|
extreme\:x(1-x^{2})^{2}
|
domain f(x)= 1/(x-2)g(x)=sqrt(x+4)
|
domain\:f(x)=\frac{1}{x-2}g(x)=\sqrt{x+4}
|
extreme f(x,y)=x^2+xy+y^2-10y+33
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-10y+33
|
minimum y=x^2+4x
|
minimum\:y=x^{2}+4x
|
extreme f(x)=2x^4-27x^3+118x^2-142x-104
|
extreme\:f(x)=2x^{4}-27x^{3}+118x^{2}-142x-104
|
f(x,y)=x^4-2x^2+y^2-4y
|
f(x,y)=x^{4}-2x^{2}+y^{2}-4y
|
extreme f(x)=xe^{-9x},0<= x<= 2
|
extreme\:f(x)=xe^{-9x},0\le\:x\le\:2
|
extreme f(x,y)=9x^2-7
|
extreme\:f(x,y)=9x^{2}-7
|
extreme y=(x^3)/(x^2-1)
|
extreme\:y=\frac{x^{3}}{x^{2}-1}
|
minimum s
|
minimum\:s
|
extreme f(x)=2cos(x)+sin^2(x)
|
extreme\:f(x)=2\cos(x)+\sin^{2}(x)
|
z(3+x^{0.25})^3*x^{-0.75}
|
z(3+x^{0.25})^{3}\cdot\:x^{-0.75}
|
intercepts f(x)=y-3= 7/8 (x-4)
|
intercepts\:f(x)=y-3=\frac{7}{8}(x-4)
|
f(x,y)=x^4+y^4-4xy+2
|
f(x,y)=x^{4}+y^{4}-4xy+2
|
extreme f(x)=P(x)=x^3+x^2-5x+3
|
extreme\:f(x)=P(x)=x^{3}+x^{2}-5x+3
|
minimum 2x^3-3x^2-12x+12
|
minimum\:2x^{3}-3x^{2}-12x+12
|
extreme f(x)=(10x)/(1+x^2)
|
extreme\:f(x)=\frac{10x}{1+x^{2}}
|
extreme f(x)= 1/3 x^3-1/2 x^2-2x
|
extreme\:f(x)=\frac{1}{3}x^{3}-\frac{1}{2}x^{2}-2x
|
extreme f(x)=x^3-3x+1,0<= x<= 5
|
extreme\:f(x)=x^{3}-3x+1,0\le\:x\le\:5
|
extreme f(x)=x^3-12x+10
|
extreme\:f(x)=x^{3}-12x+10
|
extreme f(x)=x^3-12x+12
|
extreme\:f(x)=x^{3}-12x+12
|
extreme f(x)=x-3\sqrt[3]{x}+2
|
extreme\:f(x)=x-3\sqrt[3]{x}+2
|
extreme f(x)=(x^2)/(x-5)
|
extreme\:f(x)=\frac{x^{2}}{x-5}
|
extreme points f(x)=-x^3-6x^2+1
|
extreme\:points\:f(x)=-x^{3}-6x^{2}+1
|
extreme f(x)=3x^2+4x-4
|
extreme\:f(x)=3x^{2}+4x-4
|
extreme f(x)=(3x)/(2x^2+2),-4<= x<= 4
|
extreme\:f(x)=\frac{3x}{2x^{2}+2},-4\le\:x\le\:4
|
extreme f(x)=-x^3+3x^2-5
|
extreme\:f(x)=-x^{3}+3x^{2}-5
|
extreme f(x)=cos(7x)
|
extreme\:f(x)=\cos(7x)
|
extreme f(x)=x-2ln(x)
|
extreme\:f(x)=x-2\ln(x)
|
extreme f(x,y)=x^4+y^4-2xy
|
extreme\:f(x,y)=x^{4}+y^{4}-2xy
|
extreme (2x)/(ln(x))
|
extreme\:\frac{2x}{\ln(x)}
|
extreme f(x)=12+2x-x^2,0<= x<= 5
|
extreme\:f(x)=12+2x-x^{2},0\le\:x\le\:5
|
extreme f(x)=4x+y
|
extreme\:f(x)=4x+y
|
extreme f(x)=1-sqrt(x)
|
extreme\:f(x)=1-\sqrt{x}
|
slope intercept-5x-12y=11
|
slope\:intercept\:-5x-12y=11
|
f(x,y)=x^2+xy+y^2+3x-3y+7
|
f(x,y)=x^{2}+xy+y^{2}+3x-3y+7
|
f(x,y)= x/(1-x^2-y^2)
|
f(x,y)=\frac{x}{1-x^{2}-y^{2}}
|
extreme f(x)=cos(6x)
|
extreme\:f(x)=\cos(6x)
|
extreme f(x)=x^2-6,(-2,4)
|
extreme\:f(x)=x^{2}-6,(-2,4)
|
extreme 2x^3+3x^2+12x-4
|
extreme\:2x^{3}+3x^{2}+12x-4
|
B(1+p)
|
B(1+p)
|
extreme f(x)=-x^3-9x^2-15x+1
|
extreme\:f(x)=-x^{3}-9x^{2}-15x+1
|
extreme f(x,y)=4y^2+5x^2-9y+8x-19
|
extreme\:f(x,y)=4y^{2}+5x^{2}-9y+8x-19
|
f(x)=8x^2+8xy+10y^2-24x-28y+27
|
f(x)=8x^{2}+8xy+10y^{2}-24x-28y+27
|
extreme f(x)=x-4ln(x)
|
extreme\:f(x)=x-4\ln(x)
|
inverse-2/3 x-5
|
inverse\:-\frac{2}{3}x-5
|
extreme f(x)=-x-ln(cos(x))
|
extreme\:f(x)=-x-\ln(\cos(x))
|
f(x,y)=(sqrt(xy))/(sqrt(x^2-1))
|
f(x,y)=\frac{\sqrt{xy}}{\sqrt{x^{2}-1}}
|
extreme f(x)=x^3+3x^2-45x+4
|
extreme\:f(x)=x^{3}+3x^{2}-45x+4
|
f(x,y)=-6x+5y
|
f(x,y)=-6x+5y
|
f(x,y)=2x^2+3xy+4y^2+7x+11y
|
f(x,y)=2x^{2}+3xy+4y^{2}+7x+11y
|
extreme f(x)=2x^3-3x^2+4
|
extreme\:f(x)=2x^{3}-3x^{2}+4
|
extreme 2x^3+6xy^2-3y^3-150x
|
extreme\:2x^{3}+6xy^{2}-3y^{3}-150x
|
extreme f(x)=x^3-2x^2-15x+10,-2<= x<= 0
|
extreme\:f(x)=x^{3}-2x^{2}-15x+10,-2\le\:x\le\:0
|
f(x,y)=2x^4-5x^2y^3-3xy^4
|
f(x,y)=2x^{4}-5x^{2}y^{3}-3xy^{4}
|
extreme f(x)=2x^2-4x+2
|
extreme\:f(x)=2x^{2}-4x+2
|
extreme points f(x)=x^5+x^4
|
extreme\:points\:f(x)=x^{5}+x^{4}
|
line (3,)(,)
|
line\:(3,)(,)
|
extreme f(x)=x^3-9x^2+4
|
extreme\:f(x)=x^{3}-9x^{2}+4
|
extreme f(x)=x^3-9x^2+5
|
extreme\:f(x)=x^{3}-9x^{2}+5
|
extreme f(x)=x^3-9x^2+2
|
extreme\:f(x)=x^{3}-9x^{2}+2
|
f(x)= 1/(sqrt(16-x^2+4y^2))
|
f(x)=\frac{1}{\sqrt{16-x^{2}+4y^{2}}}
|
extreme f(x)=x^3(1-x)^2
|
extreme\:f(x)=x^{3}(1-x)^{2}
|
extreme y=x^{2/3}(6-x)^{1/3}
|
extreme\:y=x^{\frac{2}{3}}(6-x)^{\frac{1}{3}}
|
extreme f(x)=(x^2-4)^7
|
extreme\:f(x)=(x^{2}-4)^{7}
|
extreme y=x^3-27x+3,-2<= x<= 4
|
extreme\:y=x^{3}-27x+3,-2\le\:x\le\:4
|
extreme f(x)=2x^4-8x+3
|
extreme\:f(x)=2x^{4}-8x+3
|
extreme 2x^3+3x^2-12x+5,0<= x<= 2
|
extreme\:2x^{3}+3x^{2}-12x+5,0\le\:x\le\:2
|
inverse 5/(12+3x)
|
inverse\:\frac{5}{12+3x}
|
extreme f(x,y)=x^2+xy+y^2-28y+261
|
extreme\:f(x,y)=x^{2}+xy+y^{2}-28y+261
|
extreme (x-2)(x-3)^2
|
extreme\:(x-2)(x-3)^{2}
|
extreme (x^3)/(x^2-4)
|
extreme\:\frac{x^{3}}{x^{2}-4}
|
extreme f(x)=24x-2x^3
|
extreme\:f(x)=24x-2x^{3}
|
f(x,y)=2x^2+3xy+4y^2+5x-2y
|
f(x,y)=2x^{2}+3xy+4y^{2}+5x-2y
|
extreme f(x,y)=2x^2+3xy+y^2+5
|
extreme\:f(x,y)=2x^{2}+3xy+y^{2}+5
|
extreme f(x)=x^4+8x^3+22x^2+24x+9
|
extreme\:f(x)=x^{4}+8x^{3}+22x^{2}+24x+9
|
extreme f(x,y)=2x^3+6xy^2-3y^3-150x
|
extreme\:f(x,y)=2x^{3}+6xy^{2}-3y^{3}-150x
|
extreme f(x,y)=x^3-2xy+y^2+2
|
extreme\:f(x,y)=x^{3}-2xy+y^{2}+2
|
extreme f(x)=12x+ln(x)
|
extreme\:f(x)=12x+\ln(x)
|
inverse f(x)=3-(x-1)^2
|
inverse\:f(x)=3-(x-1)^{2}
|
extreme ln(27+8x^3)
|
extreme\:\ln(27+8x^{3})
|
extreme x^3-6x^2-15x+7
|
extreme\:x^{3}-6x^{2}-15x+7
|
f(x,y)=x^3+y^2-3x+1
|
f(x,y)=x^{3}+y^{2}-3x+1
|
extreme f(x,y)=xy+1/x+8/y
|
extreme\:f(x,y)=xy+\frac{1}{x}+\frac{8}{y}
|
extreme-3x^{5/3}-15x^{2/3}
|
extreme\:-3x^{\frac{5}{3}}-15x^{\frac{2}{3}}
|
extreme x^3-12x+5
|
extreme\:x^{3}-12x+5
|
minimum f(x)=4x^2-8x+16
|
minimum\:f(x)=4x^{2}-8x+16
|
extreme y=xsqrt(9-x^2)
|
extreme\:y=x\sqrt{9-x^{2}}
|
extreme f(x)=(x^2-4)/(9-x^2)
|
extreme\:f(x)=\frac{x^{2}-4}{9-x^{2}}
|
extreme-2x^2+3x+1
|
extreme\:-2x^{2}+3x+1
|
parity f(x)=3x^6+x^{10}+4
|
parity\:f(x)=3x^{6}+x^{10}+4
|
extreme f(x)=x+sin^2(x)
|
extreme\:f(x)=x+\sin^{2}(x)
|
extreme y=x+1/x
|
extreme\:y=x+\frac{1}{x}
|
extreme 2x+1+5/(x-5)
|
extreme\:2x+1+\frac{5}{x-5}
|
extreme f(x)=(x-y)(1-xy)
|
extreme\:f(x)=(x-y)(1-xy)
|
f(x,y)=2x^2+y^2
|
f(x,y)=2x^{2}+y^{2}
|