f(x)=2x+12
|
f(x)=2x+12
|
critical points of f(x)=6x^3-9x^2-36x
|
critical\:points\:f(x)=6x^{3}-9x^{2}-36x
|
y=6x+7
|
y=6x+7
|
y=x^3+2x^2
|
y=x^{3}+2x^{2}
|
f(x)=sqrt(5x-2)
|
f(x)=\sqrt{5x-2}
|
y=2(x-3)^2-4
|
y=2(x-3)^{2}-4
|
f(x)=-2x^3+3x^2+12x-5
|
f(x)=-2x^{3}+3x^{2}+12x-5
|
y=-2(x+3)^2+8
|
y=-2(x+3)^{2}+8
|
y=(x-1)^2-1
|
y=(x-1)^{2}-1
|
f(x)=5x^7
|
f(x)=5x^{7}
|
f(x)=(x+1)(x-2)(x-4)
|
f(x)=(x+1)(x-2)(x-4)
|
f(x)=(x^2-3x)e^x
|
f(x)=(x^{2}-3x)e^{x}
|
critical points of f(x)=8t^{2/3}+t^{5/3}
|
critical\:points\:f(x)=8t^{\frac{2}{3}}+t^{\frac{5}{3}}
|
y=3x^{2/3}-2x
|
y=3x^{\frac{2}{3}}-2x
|
y=9x+1
|
y=9x+1
|
f(k)=7k^2+9k
|
f(k)=7k^{2}+9k
|
f(x)=(2ln(x))/x
|
f(x)=\frac{2\ln(x)}{x}
|
x=t^3
|
x=t^{3}
|
g(x)=-2
|
g(x)=-2
|
y= 1/(x^2-4)
|
y=\frac{1}{x^{2}-4}
|
f(t)=4t^2
|
f(t)=4t^{2}
|
f(x)=ln(e^{cos(x)})
|
f(x)=\ln(e^{\cos(x)})
|
f(x)=ln(x^2+4x+5)
|
f(x)=\ln(x^{2}+4x+5)
|
inverse of f(x)=sqrt(1-4x^2)
|
inverse\:f(x)=\sqrt{1-4x^{2}}
|
f(x)= 6/(x-5)
|
f(x)=\frac{6}{x-5}
|
f(x)=cos(2pix)
|
f(x)=\cos(2πx)
|
f(x)=3x^2-2x-6
|
f(x)=3x^{2}-2x-6
|
f(x)=|x|-5
|
f(x)=\left|x\right|-5
|
f(x)=2x^2+x+4
|
f(x)=2x^{2}+x+4
|
f(x)=(1+tan(x))/(1-tan(x))
|
f(x)=\frac{1+\tan(x)}{1-\tan(x)}
|
f(m)=m^4-1
|
f(m)=m^{4}-1
|
f(x)=sqrt(x^2-49)
|
f(x)=\sqrt{x^{2}-49}
|
f(x)=3x^2-4x-5
|
f(x)=3x^{2}-4x-5
|
f(x)=3x^2-4x+3
|
f(x)=3x^{2}-4x+3
|
monotone intervals 5(1/4)^x
|
monotone\:intervals\:5(\frac{1}{4})^{x}
|
f(x)=sin^3(3x)
|
f(x)=\sin^{3}(3x)
|
f(x)= 1/x+3
|
f(x)=\frac{1}{x}+3
|
f(x)=x^{200001}+3x^{17}+4x^9-4
|
f(x)=x^{200001}+3x^{17}+4x^{9}-4
|
y=8x-10
|
y=8x-10
|
f(x)=1-|x|
|
f(x)=1-\left|x\right|
|
y= x/2+1
|
y=\frac{x}{2}+1
|
f(t)=(sin(2t))^2
|
f(t)=(\sin(2t))^{2}
|
f(x)=e^{x^2+1}
|
f(x)=e^{x^{2}+1}
|
f(θ)=sin(θ)tan(θ)
|
f(θ)=\sin(θ)\tan(θ)
|
f(x)=(1+tanh(x))/(1-tanh(x))
|
f(x)=\frac{1+\tanh(x)}{1-\tanh(x)}
|
line (-2,-5)(-4,-2)
|
line\:(-2,-5)(-4,-2)
|
f(x)=4^{x-3}
|
f(x)=4^{x-3}
|
f(x)=xsqrt(1+x^2)
|
f(x)=x\sqrt{1+x^{2}}
|
f(x)=(x+4)^2-2
|
f(x)=(x+4)^{2}-2
|
f(x)=3x^2+2x-7
|
f(x)=3x^{2}+2x-7
|
f(x)=-5x^2+30x-41
|
f(x)=-5x^{2}+30x-41
|
f(u)=u
|
f(u)=u
|
f(x)=-x^2-2x+5
|
f(x)=-x^{2}-2x+5
|
f(x)= 2/(3x-1)
|
f(x)=\frac{2}{3x-1}
|
f(x)=sqrt(x^2-8x+12)
|
f(x)=\sqrt{x^{2}-8x+12}
|
f(x)=4x^2-25
|
f(x)=4x^{2}-25
|
asymptotes of =(x^3-x^2-x+1)/(x^2-4)
|
asymptotes\:=\frac{x^{3}-x^{2}-x+1}{x^{2}-4}
|
intercepts of f(x)=x^4
|
intercepts\:f(x)=x^{4}
|
f(x)=4x^2-2x
|
f(x)=4x^{2}-2x
|
f(x)=-(x+6)^2
|
f(x)=-(x+6)^{2}
|
y=-(x-3)^2+4
|
y=-(x-3)^{2}+4
|
f(x)=15x^3
|
f(x)=15x^{3}
|
y=-1/8 x^2
|
y=-\frac{1}{8}x^{2}
|
f(x)=(x^2-1)/((x+1)^2)
|
f(x)=\frac{x^{2}-1}{(x+1)^{2}}
|
f(x)=-x^2-5x-6
|
f(x)=-x^{2}-5x-6
|
y=1+sin(x)
|
y=1+\sin(x)
|
y=x^2-49
|
y=x^{2}-49
|
f(x)=(1+1/x)^x
|
f(x)=(1+\frac{1}{x})^{x}
|
domain of sqrt(1-\sqrt{1-x^2)}
|
domain\:\sqrt{1-\sqrt{1-x^{2}}}
|
f(x)=4x^2-4x-1
|
f(x)=4x^{2}-4x-1
|
f(x)=c
|
f(x)=c
|
f(x)=(3x)/(x-1)
|
f(x)=\frac{3x}{x-1}
|
r(θ)=sec(θ)tan(θ)
|
r(θ)=\sec(θ)\tan(θ)
|
f(y)=\sqrt[4]{y}
|
f(y)=\sqrt[4]{y}
|
y=e^{x-2}
|
y=e^{x-2}
|
f(x)=x^3-2x^2-19x+20
|
f(x)=x^{3}-2x^{2}-19x+20
|
f(x)=log_{3/2}(x)
|
f(x)=\log_{\frac{3}{2}}(x)
|
f(x)=(x-2)/(x+4)
|
f(x)=\frac{x-2}{x+4}
|
f(x)= 1/((1-x^2))
|
f(x)=\frac{1}{(1-x^{2})}
|
line m=7,\at (0,6)
|
line\:m=7,\at\:(0,6)
|
f(x)=|x^3-1|
|
f(x)=\left|x^{3}-1\right|
|
f(x)=(sqrt(3)cos(x)+sin(x))/2
|
f(x)=\frac{\sqrt{3}\cos(x)+\sin(x)}{2}
|
f(x)=4x^2-6x+3
|
f(x)=4x^{2}-6x+3
|
y=e^x+1
|
y=e^{x}+1
|
f(x)=(log_{3}(x))^2
|
f(x)=(\log_{3}(x))^{2}
|
y=2^{x-5}
|
y=2^{x-5}
|
f(x)=x^2-10x+20
|
f(x)=x^{2}-10x+20
|
f(x)=1+x+x^2+x^3+x^4
|
f(x)=1+x+x^{2}+x^{3}+x^{4}
|
P(y)=(1,5,-4)yQ(y)=(2,3,-1)
|
P(y)=(1,5,-4)yQ(y)=(2,3,-1)
|
f(x)=(sin(x))^{sin(x)}
|
f(x)=(\sin(x))^{\sin(x)}
|
f(x)=cos(x)sin^2(x)
|
f(x)=\cos(x)\sin^{2}(x)
|
f(x)=3x^2+x-5
|
f(x)=3x^{2}+x-5
|
f(x)=(x-1)^2-1
|
f(x)=(x-1)^{2}-1
|
f(x)=5^{x-3}
|
f(x)=5^{x-3}
|
f(x)=-(x-1)^2
|
f(x)=-(x-1)^{2}
|
f(x)=4x^2+2x-3
|
f(x)=4x^{2}+2x-3
|
f(x)=arcsin((2x)/(1+x^2))
|
f(x)=\arcsin(\frac{2x}{1+x^{2}})
|
y=2sec(sqrt(x))
|
y=2\sec(\sqrt{x})
|
f(x)= x/(10)
|
f(x)=\frac{x}{10}
|
f(x)=3x^2-x-2
|
f(x)=3x^{2}-x-2
|