f(x)=11x
|
f(x)=11x
|
domain of (1-4t)/(3+t)
|
domain\:\frac{1-4t}{3+t}
|
g(x)=-3x+1
|
g(x)=-3x+1
|
f(x)=3x^2-6x+7
|
f(x)=3x^{2}-6x+7
|
f(x)=3x^2-6x-2
|
f(x)=3x^{2}-6x-2
|
f(x)=x+2cos(x)
|
f(x)=x+2\cos(x)
|
y= x/(x+4)
|
y=\frac{x}{x+4}
|
f(x)=2x^2+7x+3
|
f(x)=2x^{2}+7x+3
|
f(x)=3x^2-5x+3
|
f(x)=3x^{2}-5x+3
|
f(x)=(x+2)^2+1
|
f(x)=(x+2)^{2}+1
|
f(x)=(x^2-x-6)/(x-3)
|
f(x)=\frac{x^{2}-x-6}{x-3}
|
f(x)=20x^3
|
f(x)=20x^{3}
|
asymptotes of f(x)=(x+4)/((x-3)(x+4))
|
asymptotes\:f(x)=\frac{x+4}{(x-3)(x+4)}
|
f(t)=\sqrt[3]{t}
|
f(t)=\sqrt[3]{t}
|
f(x)=|x-2|-1
|
f(x)=\left|x-2\right|-1
|
f(x)=(1/3)^{x-2}
|
f(x)=(\frac{1}{3})^{x-2}
|
f(x)=(x+2)/(x^2-3x-10)
|
f(x)=\frac{x+2}{x^{2}-3x-10}
|
f(X)=X^4
|
f(X)=X^{4}
|
y=e^x+e^{-x}
|
y=e^{x}+e^{-x}
|
f(x)=sqrt((x+2)^3+1)
|
f(x)=\sqrt{(x+2)^{3}+1}
|
f(x)=3x^2+4x+2
|
f(x)=3x^{2}+4x+2
|
f(x)=(sqrt(2x^2+1))/(3x-5)
|
f(x)=\frac{\sqrt{2x^{2}+1}}{3x-5}
|
f(x)=cos(x)-cos^2(x)
|
f(x)=\cos(x)-\cos^{2}(x)
|
inflection points of x^4-3x^2
|
inflection\:points\:x^{4}-3x^{2}
|
y=-cot(x)
|
y=-\cot(x)
|
y=(2/3)^x
|
y=(\frac{2}{3})^{x}
|
f(z)=2z^2
|
f(z)=2z^{2}
|
f(x)=-x^2+5x
|
f(x)=-x^{2}+5x
|
y=3x^5
|
y=3x^{5}
|
f(x)=x^{1/(1-x)}
|
f(x)=x^{\frac{1}{1-x}}
|
f(x)=12x^5
|
f(x)=12x^{5}
|
y=x^2-36
|
y=x^{2}-36
|
f(x)=-x^2-6x+9
|
f(x)=-x^{2}-6x+9
|
f(x)=3x^2+5x-7
|
f(x)=3x^{2}+5x-7
|
midpoint (-2,4)(4,3)
|
midpoint\:(-2,4)(4,3)
|
domain of f(x)=(x-4)/(sqrt(x))
|
domain\:f(x)=\frac{x-4}{\sqrt{x}}
|
f(x)=(cos(x)-cos(3x))/(sin(2x))
|
f(x)=\frac{\cos(x)-\cos(3x)}{\sin(2x)}
|
f(x)=(3x-9)(x-6)
|
f(x)=(3x-9)(x-6)
|
f(x)=(x-2)/(x-1)
|
f(x)=\frac{x-2}{x-1}
|
y=sqrt(2x-6)
|
y=\sqrt{2x-6}
|
f(m)=m^2-2m-168
|
f(m)=m^{2}-2m-168
|
f(x)= 2/3 x+1
|
f(x)=\frac{2}{3}x+1
|
f(x)=6cos^8(5x)
|
f(x)=6\cos^{8}(5x)
|
f(x)=5x+11
|
f(x)=5x+11
|
f(x)=2x^3+5x+3
|
f(x)=2x^{3}+5x+3
|
y=-5/2 x-5
|
y=-\frac{5}{2}x-5
|
domain of f(x)=(x^2)/(1+x^2)
|
domain\:f(x)=\frac{x^{2}}{1+x^{2}}
|
g(x)=2^{1-x}
|
g(x)=2^{1-x}
|
f(t)=(sin(t))^2
|
f(t)=(\sin(t))^{2}
|
f(x)=(3x-7)^2
|
f(x)=(3x-7)^{2}
|
f(x)=arctan(x+1)+x^4
|
f(x)=\arctan(x+1)+x^{4}
|
f(x)=x^3+x+3
|
f(x)=x^{3}+x+3
|
f(x)=(x+4)/2
|
f(x)=\frac{x+4}{2}
|
f(x)=(x-1)^2-9
|
f(x)=(x-1)^{2}-9
|
y= 1/5 x-3
|
y=\frac{1}{5}x-3
|
f(x)=4x^2+3x-2
|
f(x)=4x^{2}+3x-2
|
p(x)=2x^3-5x^2-4x+3
|
p(x)=2x^{3}-5x^{2}-4x+3
|
domain of y=-3x^2-2x+5
|
domain\:y=-3x^{2}-2x+5
|
y=sin(0.5x)
|
y=\sin(0.5x)
|
f(x)=-x^2+6x+7
|
f(x)=-x^{2}+6x+7
|
y=(x^2-x-6)/(x^2-9)
|
y=\frac{x^{2}-x-6}{x^{2}-9}
|
y=x-x^3
|
y=x-x^{3}
|
f(x)=-sqrt(2-x)
|
f(x)=-\sqrt{2-x}
|
f(x)=(3x^2)/(x^2-4)
|
f(x)=\frac{3x^{2}}{x^{2}-4}
|
f(x)=x^2+6.5x+6
|
f(x)=x^{2}+6.5x+6
|
y=e^{arctan(x)}
|
y=e^{\arctan(x)}
|
F(x)=0
|
F(x)=0
|
f(x)=cos(x)-xsin(x)
|
f(x)=\cos(x)-x\sin(x)
|
midpoint (1,-4),(-2,5)
|
midpoint\:(1,-4),(-2,5)
|
f(x)=cos^3(x)+sin^3(x)
|
f(x)=\cos^{3}(x)+\sin^{3}(x)
|
y=x^2sin(2x)
|
y=x^{2}\sin(2x)
|
y=-x^4+2x^2
|
y=-x^{4}+2x^{2}
|
f(x)=(x+6)/(x^2-36)
|
f(x)=\frac{x+6}{x^{2}-36}
|
f(x)={0:-pi<x<0,1:0<= x<pi}
|
f(x)=\left\{0:-π<x<0,1:0\le\:x<π\right\}
|
f(x)= 1/(4x^2)
|
f(x)=\frac{1}{4x^{2}}
|
f(n)=nlog_{10}(n)
|
f(n)=n\log_{10}(n)
|
f(x)=log_{5}(x)-2
|
f(x)=\log_{5}(x)-2
|
y=2x^2+3,0<= x<= 1
|
y=2x^{2}+3,0\le\:x\le\:1
|
f(x)=(sqrt(x+5))/(3x^2+10x+3)
|
f(x)=\frac{\sqrt{x+5}}{3x^{2}+10x+3}
|
range of (x+5)/(x^2+x-6)
|
range\:\frac{x+5}{x^{2}+x-6}
|
f(x)=x^3-2x^2+5
|
f(x)=x^{3}-2x^{2}+5
|
y= 3/5 x-2
|
y=\frac{3}{5}x-2
|
f(x)=(x-3)/(x+3)
|
f(x)=\frac{x-3}{x+3}
|
f(B)=B
|
f(B)=B
|
f(x)=x^4+3x^3-7x^2-7x+2
|
f(x)=x^{4}+3x^{3}-7x^{2}-7x+2
|
f(x)=\sqrt[3]{x^2+4}
|
f(x)=\sqrt[3]{x^{2}+4}
|
f(x)=x^4+5
|
f(x)=x^{4}+5
|
y= 1/3 x+6
|
y=\frac{1}{3}x+6
|
y= 1/6 x+3/2
|
y=\frac{1}{6}x+\frac{3}{2}
|
y=|x-4|+1
|
y=\left|x-4\right|+1
|
inverse of y=log_{1/5}(x)
|
inverse\:y=\log_{\frac{1}{5}}(x)
|
f(r)=r^2+4
|
f(r)=r^{2}+4
|
f(x)=e^{2/x}
|
f(x)=e^{\frac{2}{x}}
|
f(x)=5x^2+2x-1
|
f(x)=5x^{2}+2x-1
|
f(x)=-x^2-x
|
f(x)=-x^{2}-x
|
f(x)=2sinh(6x)+e^{-6x}
|
f(x)=2\sinh(6x)+e^{-6x}
|
f(x)=5xsqrt(2)
|
f(x)=5x\sqrt{2}
|
f(x)={9/70 t-9/14 ,5<= t<= 26}
|
f(x)=\left\{\frac{9}{70}t-\frac{9}{14},5\le\:t\le\:26\right\}
|
f(x)=1+ln(x)
|
f(x)=1+\ln(x)
|
y=x^2+14x+33
|
y=x^{2}+14x+33
|