intercepts of F(x)=(x+3)^2(x-2)
|
intercepts\:F(x)=(x+3)^{2}(x-2)
|
parity f(x)=|x-4|
|
parity\:f(x)=|x-4|
|
monotone intervals (x-2)^3
|
monotone\:intervals\:(x-2)^{3}
|
inverse of y=(1-sqrt(x))/(1+sqrt(x))
|
inverse\:y=\frac{1-\sqrt{x}}{1+\sqrt{x}}
|
domain of pi-3arctan((x-1)/(2x+5))
|
domain\:\pi-3\arctan(\frac{x-1}{2x+5})
|
intercepts of f(x)=2^{x-1}
|
intercepts\:f(x)=2^{x-1}
|
domain of f(x)=sqrt(3-t)+sqrt(2+t)
|
domain\:f(x)=\sqrt{3-t}+\sqrt{2+t}
|
domain of f(x)=-(16)/((x+5)^2)
|
domain\:f(x)=-\frac{16}{(x+5)^{2}}
|
inverse of f(x)=(x+9)/(x-8)
|
inverse\:f(x)=\frac{x+9}{x-8}
|
range of \sqrt[3]{x-2}
|
range\:\sqrt[3]{x-2}
|
domain of 1/(x^2-5x-24)
|
domain\:\frac{1}{x^{2}-5x-24}
|
inverse of-2x-5
|
inverse\:-2x-5
|
inverse of f(x)=2-sqrt(1+x)
|
inverse\:f(x)=2-\sqrt{1+x}
|
inverse of f(x)=-4x-4
|
inverse\:f(x)=-4x-4
|
perpendicular x+y=3
|
perpendicular\:x+y=3
|
inverse of y=(3x-1)/(2x+8)
|
inverse\:y=\frac{3x-1}{2x+8}
|
domain of f(x)=sqrt(1/3 x+2)
|
domain\:f(x)=\sqrt{\frac{1}{3}x+2}
|
asymptotes of f(x)=((x-6)(x+6))/(x^2-9)
|
asymptotes\:f(x)=\frac{(x-6)(x+6)}{x^{2}-9}
|
range of f(x)=3x^3-2x^2+5x-7
|
range\:f(x)=3x^{3}-2x^{2}+5x-7
|
domain of f(x)=(sqrt(x-1))/(x-8)
|
domain\:f(x)=\frac{\sqrt{x-1}}{x-8}
|
inverse of f(x)=-3x-10
|
inverse\:f(x)=-3x-10
|
inverse of f(x)=((\sqrt[5]{x})/9)^7
|
inverse\:f(x)=(\frac{\sqrt[5]{x}}{9})^{7}
|
x^2-2
|
x^{2}-2
|
domain of h(x)=ln(x)+ln(6-x)
|
domain\:h(x)=\ln(x)+\ln(6-x)
|
inverse of f(x)=\sqrt[3]{x+8}+1
|
inverse\:f(x)=\sqrt[3]{x+8}+1
|
shift f(x)=2cos(6x+(pi)/2)
|
shift\:f(x)=2\cos(6x+\frac{\pi}{2})
|
inverse of f(x)=(x-4)/(x-1)
|
inverse\:f(x)=\frac{x-4}{x-1}
|
intercepts of f(x)=(x-5)/(x^2-11x+30)
|
intercepts\:f(x)=\frac{x-5}{x^{2}-11x+30}
|
domain of f(x)=18-t^2
|
domain\:f(x)=18-t^{2}
|
asymptotes of (x^2-36)/(x^3-2x^2-24x)
|
asymptotes\:\frac{x^{2}-36}{x^{3}-2x^{2}-24x}
|
line (0,3)(3,375)
|
line\:(0,3)(3,375)
|
critical points of x^3-12x^2+45x-50
|
critical\:points\:x^{3}-12x^{2}+45x-50
|
f(x)=((x+1))/((x-2))
|
f(x)=\frac{(x+1)}{(x-2)}
|
intercepts of f(x)=(-4)/(2x+1)
|
intercepts\:f(x)=\frac{-4}{2x+1}
|
midpoint (2,9)(12,14)
|
midpoint\:(2,9)(12,14)
|
shift-2sin(x-(pi)/(10))
|
shift\:-2\sin(x-\frac{\pi}{10})
|
monotone intervals f(x)=(7-x)e^{-x}
|
monotone\:intervals\:f(x)=(7-x)e^{-x}
|
inverse of f(x)=((x+3))/((x-2))
|
inverse\:f(x)=\frac{(x+3)}{(x-2)}
|
intercepts of 5x^2+10x
|
intercepts\:5x^{2}+10x
|
asymptotes of f(x)=(6x^2+1)/(2x^2+x-1)
|
asymptotes\:f(x)=\frac{6x^{2}+1}{2x^{2}+x-1}
|
symmetry (x+1)/(x+3)
|
symmetry\:\frac{x+1}{x+3}
|
distance (0,-3)(9,6)
|
distance\:(0,-3)(9,6)
|
asymptotes of f(x)=((5x+3))/(-x+10)
|
asymptotes\:f(x)=\frac{(5x+3)}{-x+10}
|
inverse of f(x)= 11/5 x+6
|
inverse\:f(x)=\frac{11}{5}x+6
|
inflection points of x^2e^x
|
inflection\:points\:x^{2}e^{x}
|
parity f(x)=-7x^5-x
|
parity\:f(x)=-7x^{5}-x
|
asymptotes of f(x)=(2x^2-3)/(x+1)
|
asymptotes\:f(x)=\frac{2x^{2}-3}{x+1}
|
monotone intervals 3(3/5)^{x+2}-4
|
monotone\:intervals\:3(\frac{3}{5})^{x+2}-4
|
domain of f(x)=sqrt(x)+sqrt(2-x)
|
domain\:f(x)=\sqrt{x}+\sqrt{2-x}
|
range of 2^x-5
|
range\:2^{x}-5
|
domain of 4x
|
domain\:4x
|
intercepts of-2x^2+6x+10
|
intercepts\:-2x^{2}+6x+10
|
domain of f(x)=sqrt(5-e^x)
|
domain\:f(x)=\sqrt{5-e^{x}}
|
range of f(x)=(x+4)/(x^2+x-3)
|
range\:f(x)=\frac{x+4}{x^{2}+x-3}
|
domain of 2(1/3)^x
|
domain\:2(\frac{1}{3})^{x}
|
inverse of f(x)=5x^2+20x-17
|
inverse\:f(x)=5x^{2}+20x-17
|
parity (x-3)/(x^2-1)
|
parity\:\frac{x-3}{x^{2}-1}
|
range of f(x)=e^{x-2}
|
range\:f(x)=e^{x-2}
|
inverse of f(x)=-3/x
|
inverse\:f(x)=-\frac{3}{x}
|
extreme points of f(x)=8x-ln(8x)
|
extreme\:points\:f(x)=8x-\ln(8x)
|
intercepts of f(x)=sqrt(x)
|
intercepts\:f(x)=\sqrt{x}
|
range of-log_{3}(x+3)
|
range\:-\log_{3}(x+3)
|
inverse of f(x)=(x+9)^{1/2}
|
inverse\:f(x)=(x+9)^{\frac{1}{2}}
|
inverse of f(x)= 7/(x-9)+6
|
inverse\:f(x)=\frac{7}{x-9}+6
|
range of y=cos(1/2 x)+2
|
range\:y=\cos(\frac{1}{2}x)+2
|
inverse of f(x)=8x^3+6
|
inverse\:f(x)=8x^{3}+6
|
inverse of y=1+2^{-x}
|
inverse\:y=1+2^{-x}
|
domain of 1/4 x^3-2
|
domain\:\frac{1}{4}x^{3}-2
|
inverse of f(x)= 1/5 x
|
inverse\:f(x)=\frac{1}{5}x
|
domain of 7x-6
|
domain\:7x-6
|
asymptotes of f(x)=x+3/(x+2)
|
asymptotes\:f(x)=x+\frac{3}{x+2}
|
inverse of \sqrt[3]{(x-1)/4}
|
inverse\:\sqrt[3]{\frac{x-1}{4}}
|
inverse of f(x)=(2x+7)/3
|
inverse\:f(x)=\frac{2x+7}{3}
|
inverse of f(x)=((2x-1))/(x+1)
|
inverse\:f(x)=\frac{(2x-1)}{x+1}
|
intercepts of f(x)=x^2-3x+1
|
intercepts\:f(x)=x^{2}-3x+1
|
domain of (3x-6)/(x-2)
|
domain\:\frac{3x-6}{x-2}
|
domain of f(x)= 3/(x^2)
|
domain\:f(x)=\frac{3}{x^{2}}
|
inverse of f(x)=ln(x/(x-1))
|
inverse\:f(x)=\ln(\frac{x}{x-1})
|
inverse of f(x)=3+(6+x)^{1/2}
|
inverse\:f(x)=3+(6+x)^{\frac{1}{2}}
|
asymptotes of y=x^2e^x
|
asymptotes\:y=x^{2}e^{x}
|
midpoint (2,-9)(-1,6)
|
midpoint\:(2,-9)(-1,6)
|
periodicity of f(x)= 3/2 cos((pi x)/2)
|
periodicity\:f(x)=\frac{3}{2}\cos(\frac{\pi\:x}{2})
|
critical points of f(x)=2x^3-9x^2+12x
|
critical\:points\:f(x)=2x^{3}-9x^{2}+12x
|
line y=4x+c
|
line\:y=4x+c
|
asymptotes of ((sqrt(x^2+4))/x)
|
asymptotes\:(\frac{\sqrt{x^{2}+4}}{x})
|
domain of f(x)=sqrt((x^2)/(x^2-1))
|
domain\:f(x)=\sqrt{\frac{x^{2}}{x^{2}-1}}
|
distance (1,0)(-7,-6)
|
distance\:(1,0)(-7,-6)
|
inverse of f(x)=(-1)/(x-2)
|
inverse\:f(x)=\frac{-1}{x-2}
|
domain of f(x)=(x+3)/(x^2-1)
|
domain\:f(x)=\frac{x+3}{x^{2}-1}
|
slope intercept of (y-1.2)=-1/5 (x+0.5)
|
slope\:intercept\:(y-1.2)=-\frac{1}{5}(x+0.5)
|
critical points of f(x)=6x^2+30x-84
|
critical\:points\:f(x)=6x^{2}+30x-84
|
range of f(x)=(4-sqrt(x))/(x-16)
|
range\:f(x)=\frac{4-\sqrt{x}}{x-16}
|
domain of ((2x+5))/(x-3)
|
domain\:\frac{(2x+5)}{x-3}
|
extreme points of f(x)=x^3+3x^2-9x+4
|
extreme\:points\:f(x)=x^{3}+3x^{2}-9x+4
|
inverse of y=2x+5
|
inverse\:y=2x+5
|
inverse of x^2-2x
|
inverse\:x^{2}-2x
|
symmetry x^{14}
|
symmetry\:x^{14}
|
inverse of 5-x^2
|
inverse\:5-x^{2}
|
inverse of f(x)=log_{5}(x)
|
inverse\:f(x)=\log_{5}(x)
|
inflection points of 12x^3+12x^2-24x
|
inflection\:points\:12x^{3}+12x^{2}-24x
|