parity x+tan(x)
|
parity\:x+\tan(x)
|
inverse of 4sin(x)+3
|
inverse\:4\sin(x)+3
|
inflection points of 1/x
|
inflection\:points\:\frac{1}{x}
|
critical points of x^{1/3}
|
critical\:points\:x^{\frac{1}{3}}
|
intercepts of (1/3)^x
|
intercepts\:(\frac{1}{3})^{x}
|
domain of f(x)=ln(14x)
|
domain\:f(x)=\ln(14x)
|
intercepts of f(x)=2x^2+4x-15
|
intercepts\:f(x)=2x^{2}+4x-15
|
domain of \sqrt[4]{x^5}
|
domain\:\sqrt[4]{x^{5}}
|
inverse of f(x)= 4/(9+x)
|
inverse\:f(x)=\frac{4}{9+x}
|
domain of f(x)= 1/(\frac{x){1/x+1}}
|
domain\:f(x)=\frac{1}{\frac{x}{\frac{1}{x}+1}}
|
domain of f(x)=sqrt(5x)-7x+8
|
domain\:f(x)=\sqrt{5x}-7x+8
|
asymptotes of f(x)=(9x^3)/(x-6)
|
asymptotes\:f(x)=\frac{9x^{3}}{x-6}
|
domain of f(x)=sqrt(x^2-144)
|
domain\:f(x)=\sqrt{x^{2}-144}
|
range of x/(x^2+1)
|
range\:\frac{x}{x^{2}+1}
|
intercepts of (-3x+3)/(5x-5)
|
intercepts\:\frac{-3x+3}{5x-5}
|
intercepts of f(x)=(-4)/(x-3)
|
intercepts\:f(x)=\frac{-4}{x-3}
|
domain of (1-5t)/(4+t)
|
domain\:\frac{1-5t}{4+t}
|
perpendicular (-14,8)y=3
|
perpendicular\:(-14,8)y=3
|
domain of f(x)=(1+x)/(1-x)
|
domain\:f(x)=\frac{1+x}{1-x}
|
inverse of f(x)=(2x)/(x-3)
|
inverse\:f(x)=\frac{2x}{x-3}
|
domain of x/(-x+1)
|
domain\:\frac{x}{-x+1}
|
inverse of f(x)=-3/4+5
|
inverse\:f(x)=-\frac{3}{4}+5
|
distance (0,0)(-9,12)
|
distance\:(0,0)(-9,12)
|
intercepts of f(x)=-5
|
intercepts\:f(x)=-5
|
inverse of f(x)=(3x^2+4)/5
|
inverse\:f(x)=\frac{3x^{2}+4}{5}
|
domain of f(x)=2x-10
|
domain\:f(x)=2x-10
|
domain of f(x)= 5/(x-4)
|
domain\:f(x)=\frac{5}{x-4}
|
perpendicular 6x+y=-1
|
perpendicular\:6x+y=-1
|
perpendicular x=-6,\at (-1,-2)
|
perpendicular\:x=-6,\at\:(-1,-2)
|
asymptotes of y=e^{-x}-1
|
asymptotes\:y=e^{-x}-1
|
inflection points of sec(x)
|
inflection\:points\:\sec(x)
|
inflection points of f(x)= x/(x^2+9)
|
inflection\:points\:f(x)=\frac{x}{x^{2}+9}
|
asymptotes of y=(x^3+1)/(x^3+x)
|
asymptotes\:y=\frac{x^{3}+1}{x^{3}+x}
|
domain of f(x)= 8/(-x^2-5x+14)
|
domain\:f(x)=\frac{8}{-x^{2}-5x+14}
|
asymptotes of f(x)= x/(x+2)
|
asymptotes\:f(x)=\frac{x}{x+2}
|
extreme points of f(x)=x^3-3x,[0,4]
|
extreme\:points\:f(x)=x^{3}-3x,[0,4]
|
inverse of 3x^2+1
|
inverse\:3x^{2}+1
|
asymptotes of y=7tan(0.4x)
|
asymptotes\:y=7\tan(0.4x)
|
asymptotes of f(x)=(x^2)/(3x+1)
|
asymptotes\:f(x)=\frac{x^{2}}{3x+1}
|
inverse of f(x)=7x^2-3
|
inverse\:f(x)=7x^{2}-3
|
inverse of f(x)=2n-2
|
inverse\:f(x)=2n-2
|
critical points of f(x)=3x-6x^3
|
critical\:points\:f(x)=3x-6x^{3}
|
extreme points of f(x)=8x+13x^{8/13}
|
extreme\:points\:f(x)=8x+13x^{\frac{8}{13}}
|
domain of f(x)=(8x)/(x-2)
|
domain\:f(x)=\frac{8x}{x-2}
|
parity f(x)=x^5-3x
|
parity\:f(x)=x^{5}-3x
|
domain of f(x)= x/(4x)
|
domain\:f(x)=\frac{x}{4x}
|
f(x)=(x+1)/(x-1)
|
f(x)=\frac{x+1}{x-1}
|
critical points of 1/((x^2+1)^2)
|
critical\:points\:\frac{1}{(x^{2}+1)^{2}}
|
parity g(x)=x(x^2+1)
|
parity\:g(x)=x(x^{2}+1)
|
domain of f(x)=(8,-8)
|
domain\:f(x)=(8,-8)
|
asymptotes of y=((x-6)(x+3))/((x-3)^2)
|
asymptotes\:y=\frac{(x-6)(x+3)}{(x-3)^{2}}
|
periodicity of f(x)=-2+cos(4pi x)
|
periodicity\:f(x)=-2+\cos(4\pi\:x)
|
domain of f(x)=log_{3}(9-x^2)
|
domain\:f(x)=\log_{3}(9-x^{2})
|
extreme points of f(x)=4xsqrt(64-x^2)
|
extreme\:points\:f(x)=4x\sqrt{64-x^{2}}
|
f(x)=x^2-6x+5
|
f(x)=x^{2}-6x+5
|
asymptotes of f(x)=(-5x+5)/(3x+7)
|
asymptotes\:f(x)=\frac{-5x+5}{3x+7}
|
periodicity of y=4cos(2x)
|
periodicity\:y=4\cos(2x)
|
slope of f(x)=6x-6
|
slope\:f(x)=6x-6
|
domain of (3x^2+5x-12)/(x^3-3x^2)
|
domain\:\frac{3x^{2}+5x-12}{x^{3}-3x^{2}}
|
inverse of f(x)=y=3x^2-5
|
inverse\:f(x)=y=3x^{2}-5
|
frequency f(x)=-2sin(x/4)+3
|
frequency\:f(x)=-2\sin(\frac{x}{4})+3
|
midpoint (-4,8)(6,7)
|
midpoint\:(-4,8)(6,7)
|
slope of m=1
|
slope\:m=1
|
domain of f(x)=sqrt(36-x^2)
|
domain\:f(x)=\sqrt{36-x^{2}}
|
inverse of f(x)=(2ln(x)-1)/(ln(x)+2)
|
inverse\:f(x)=\frac{2\ln(x)-1}{\ln(x)+2}
|
amplitude of f(x)=2sin(1/2 x)
|
amplitude\:f(x)=2\sin(\frac{1}{2}x)
|
inverse of f(x)=\sqrt[5]{x+1}+2
|
inverse\:f(x)=\sqrt[5]{x+1}+2
|
asymptotes of y=(2x-1)/(x^2+7)
|
asymptotes\:y=\frac{2x-1}{x^{2}+7}
|
domain of (x-4)^2+2
|
domain\:(x-4)^{2}+2
|
critical points of 18cos(x)+2sin^2(x)
|
critical\:points\:18\cos(x)+2\sin^{2}(x)
|
line (-3,-7)(7,-2)
|
line\:(-3,-7)(7,-2)
|
distance (-1,1)(4,4)
|
distance\:(-1,1)(4,4)
|
asymptotes of f(x)=(6x)/(x^2-7x)
|
asymptotes\:f(x)=\frac{6x}{x^{2}-7x}
|
inverse of y=100-x2
|
inverse\:y=100-x2
|
domain of f(x)=sin(1/x)
|
domain\:f(x)=\sin(\frac{1}{x})
|
domain of f(x)=ln(1+t)
|
domain\:f(x)=\ln(1+t)
|
domain of (sqrt(x+5))/(x-1)
|
domain\:\frac{\sqrt{x+5}}{x-1}
|
domain of sqrt(x+2)+1
|
domain\:\sqrt{x+2}+1
|
domain of f(x)= 1/(-5(\frac{1){-x+1})+8}
|
domain\:f(x)=\frac{1}{-5(\frac{1}{-x+1})+8}
|
domain of (2x^2+1)^3(x^2-1)^2
|
domain\:(2x^{2}+1)^{3}(x^{2}-1)^{2}
|
inverse of f(x)=((2x-1))/(2x+7)
|
inverse\:f(x)=\frac{(2x-1)}{2x+7}
|
intercepts of (x^2+4x-12)/(x^2-x-2)
|
intercepts\:\frac{x^{2}+4x-12}{x^{2}-x-2}
|
domain of f(x)=\sqrt[3]{x-6}
|
domain\:f(x)=\sqrt[3]{x-6}
|
range of f(x)=-sqrt(x-3)+2
|
range\:f(x)=-\sqrt{x-3}+2
|
inverse of \sqrt[3]{(x+1)/4}
|
inverse\:\sqrt[3]{\frac{x+1}{4}}
|
midpoint (3,4)(7,5)
|
midpoint\:(3,4)(7,5)
|
intercepts of f(x)=2x^2+x-6
|
intercepts\:f(x)=2x^{2}+x-6
|
asymptotes of (x^2)/(x^2-x-12)
|
asymptotes\:\frac{x^{2}}{x^{2}-x-12}
|
domain of f(x)=ln(x+6)
|
domain\:f(x)=\ln(x+6)
|
f(x)=x-3
|
f(x)=x-3
|
inverse of f(x)=(1-5x)/(3x+7)
|
inverse\:f(x)=\frac{1-5x}{3x+7}
|
domain of f(x)= 1/((x+2)(x-4))
|
domain\:f(x)=\frac{1}{(x+2)(x-4)}
|
line (13,1),(19,0)
|
line\:(13,1),(19,0)
|
domain of g(x)=-1/(2sqrt(-x+7))
|
domain\:g(x)=-\frac{1}{2\sqrt{-x+7}}
|
intercepts of (x^3+3x^2-4x)/(-4x^2+4x+8)
|
intercepts\:\frac{x^{3}+3x^{2}-4x}{-4x^{2}+4x+8}
|
perpendicular y= x/3-7
|
perpendicular\:y=\frac{x}{3}-7
|
inverse of f(x)=(x+4)/5
|
inverse\:f(x)=\frac{x+4}{5}
|
inverse of f(x)=18500(0.36-x^2)
|
inverse\:f(x)=18500(0.36-x^{2})
|
domain of G(t)=(1-2t)/(3+t)
|
domain\:G(t)=\frac{1-2t}{3+t}
|
range of f(x)=(x^2)/(8-x^2)
|
range\:f(x)=\frac{x^{2}}{8-x^{2}}
|