domain of (4-x)-(x^2-3x)
|
domain\:(4-x)-(x^{2}-3x)
|
domain of f(x)= 1/(x+19)
|
domain\:f(x)=\frac{1}{x+19}
|
domain of x^2+8x+14
|
domain\:x^{2}+8x+14
|
parity x/(x^2+3)
|
parity\:\frac{x}{x^{2}+3}
|
distance (-4,-5)(2,1)
|
distance\:(-4,-5)(2,1)
|
domain of f(x)=(x+1)/x
|
domain\:f(x)=\frac{x+1}{x}
|
domain of f(x)=-x-1
|
domain\:f(x)=-x-1
|
inverse of f(x)=(x+10)^7
|
inverse\:f(x)=(x+10)^{7}
|
parity f(x)=3x^3+2x^2+1
|
parity\:f(x)=3x^{3}+2x^{2}+1
|
extreme points of f(x)=e^{x^2-4}
|
extreme\:points\:f(x)=e^{x^{2}-4}
|
inverse of f(x)=((x^5)/5-1)^{1/3}
|
inverse\:f(x)=(\frac{x^{5}}{5}-1)^{\frac{1}{3}}
|
domain of (x-8)/(x+7)
|
domain\:\frac{x-8}{x+7}
|
extreme points of f(x)= 1/(x^2-6x+12)
|
extreme\:points\:f(x)=\frac{1}{x^{2}-6x+12}
|
domain of f(x)=((x+2)(x-3))/(2x^2)
|
domain\:f(x)=\frac{(x+2)(x-3)}{2x^{2}}
|
domain of f(x)=|2x+3|
|
domain\:f(x)=|2x+3|
|
inflection points of f(x)=x^5-20x^2
|
inflection\:points\:f(x)=x^{5}-20x^{2}
|
domain of f(x)=(x+5)/(x^2-36)
|
domain\:f(x)=\frac{x+5}{x^{2}-36}
|
intercepts of f(x)=2x^2+7x-15
|
intercepts\:f(x)=2x^{2}+7x-15
|
asymptotes of f(x)=(x+1)/(x^2+x-6)
|
asymptotes\:f(x)=\frac{x+1}{x^{2}+x-6}
|
inverse of f(x)=log_{5}(x-6)+2
|
inverse\:f(x)=\log_{5}(x-6)+2
|
inverse of f(x)=27x^3+1
|
inverse\:f(x)=27x^{3}+1
|
inverse of f(x)=sqrt(x-1)+2
|
inverse\:f(x)=\sqrt{x-1}+2
|
domain of 3-4sin(2/3 (x-1))
|
domain\:3-4\sin(\frac{2}{3}(x-1))
|
monotone intervals x^2-3x+3
|
monotone\:intervals\:x^{2}-3x+3
|
inverse of f(x)=(x+5)^2
|
inverse\:f(x)=(x+5)^{2}
|
inverse of 2+1/x
|
inverse\:2+\frac{1}{x}
|
range of f(x)=2cos(x)-2
|
range\:f(x)=2\cos(x)-2
|
inverse of f(x)=sqrt(7-x)+3
|
inverse\:f(x)=\sqrt{7-x}+3
|
domain of f(x)= 1/(-5x+1)
|
domain\:f(x)=\frac{1}{-5x+1}
|
range of (2+x)/x
|
range\:\frac{2+x}{x}
|
domain of log_{3}(x+2)
|
domain\:\log_{3}(x+2)
|
inverse of f(x)=(7x+18)/2
|
inverse\:f(x)=\frac{7x+18}{2}
|
frequency-3cos(2x)-2.5
|
frequency\:-3\cos(2x)-2.5
|
domain of f(x)= 3/(x+2)+1
|
domain\:f(x)=\frac{3}{x+2}+1
|
domain of (sqrt(x-6))^2
|
domain\:(\sqrt{x-6})^{2}
|
domain of f(x)=x-8
|
domain\:f(x)=x-8
|
shift 1/4 cos(2x-2pi)
|
shift\:\frac{1}{4}\cos(2x-2\pi)
|
f(x)=sqrt(9-x^2)
|
f(x)=\sqrt{9-x^{2}}
|
critical points of f(x)=(x^2-25)^{1/3}
|
critical\:points\:f(x)=(x^{2}-25)^{\frac{1}{3}}
|
domain of f(x)=2-x^2
|
domain\:f(x)=2-x^{2}
|
asymptotes of f(x)=((x+2))/(x+4)
|
asymptotes\:f(x)=\frac{(x+2)}{x+4}
|
critical points of f(x)= x/(x^2-9)
|
critical\:points\:f(x)=\frac{x}{x^{2}-9}
|
domain of f(x)=ln(((5-x))/((4-x)))
|
domain\:f(x)=\ln(\frac{(5-x)}{(4-x)})
|
y=|x-1|+2
|
y=\left|x-1\right|+2
|
domain of f(x)=-4x^2+4x+1
|
domain\:f(x)=-4x^{2}+4x+1
|
intercepts of f(x)=-2x+3
|
intercepts\:f(x)=-2x+3
|
extreme points of x^4-4x^3+6
|
extreme\:points\:x^{4}-4x^{3}+6
|
asymptotes of f(x)=(x^2+6x-7)/(x^2+2x-3)
|
asymptotes\:f(x)=\frac{x^{2}+6x-7}{x^{2}+2x-3}
|
domain of f(x)=y=4^x
|
domain\:f(x)=y=4^{x}
|
domain of f(x)=(8-x)/(x^2-5x)
|
domain\:f(x)=\frac{8-x}{x^{2}-5x}
|
domain of f(x)=3x-7
|
domain\:f(x)=3x-7
|
domain of (2x+5)/(x-3)
|
domain\:\frac{2x+5}{x-3}
|
line (-11/3 ,0)(0, 11/2)
|
line\:(-\frac{11}{3},0)(0,\frac{11}{2})
|
asymptotes of f(x)=4x^2-16x+9
|
asymptotes\:f(x)=4x^{2}-16x+9
|
domain of f(x)=(|x-5|)/(x-5)
|
domain\:f(x)=\frac{|x-5|}{x-5}
|
domain of f(x)=5sqrt(x)
|
domain\:f(x)=5\sqrt{x}
|
inverse of f(x)=(x+3)
|
inverse\:f(x)=(x+3)
|
domain of 1/(x^2)-4
|
domain\:\frac{1}{x^{2}}-4
|
inverse of f(x)=-5/4 x-10
|
inverse\:f(x)=-\frac{5}{4}x-10
|
domain of f(x)=(x+3)/(x^2-4x-21)
|
domain\:f(x)=\frac{x+3}{x^{2}-4x-21}
|
range of f(x)=3x-x^2
|
range\:f(x)=3x-x^{2}
|
midpoint (-6,-13)(-6.4,-3.8)
|
midpoint\:(-6,-13)(-6.4,-3.8)
|
f(x)=x+3
|
f(x)=x+3
|
asymptotes of f(x)=(5x+1)/(2x-5)
|
asymptotes\:f(x)=\frac{5x+1}{2x-5}
|
asymptotes of x/(x+3)
|
asymptotes\:\frac{x}{x+3}
|
extreme points of-0.1t^2+1.2t+98.8
|
extreme\:points\:-0.1t^{2}+1.2t+98.8
|
inverse of f(x)=((x-7))/(2x+1)
|
inverse\:f(x)=\frac{(x-7)}{2x+1}
|
intercepts of f(x)=2x^2-4
|
intercepts\:f(x)=2x^{2}-4
|
range of e^{x-3}
|
range\:e^{x-3}
|
domain of sqrt(x)+sqrt(3-x)
|
domain\:\sqrt{x}+\sqrt{3-x}
|
domain of f(x)= 2/(x+4)
|
domain\:f(x)=\frac{2}{x+4}
|
inverse of f(x)=x^7+1
|
inverse\:f(x)=x^{7}+1
|
inverse of f(x)= 1/2 y^2-1
|
inverse\:f(x)=\frac{1}{2}y^{2}-1
|
domain of 7x^2-2
|
domain\:7x^{2}-2
|
parity sqrt(16-x^2)
|
parity\:\sqrt{16-x^{2}}
|
slope of y= 7/8 x-7
|
slope\:y=\frac{7}{8}x-7
|
inverse of f(x)=sqrt(2x-3)
|
inverse\:f(x)=\sqrt{2x-3}
|
inverse of f(x)=4-6x
|
inverse\:f(x)=4-6x
|
inverse of f(x)=2x^2-3x+1
|
inverse\:f(x)=2x^{2}-3x+1
|
inverse of f(x)=(x+3)/6
|
inverse\:f(x)=\frac{x+3}{6}
|
intercepts of y=x^2+2
|
intercepts\:y=x^{2}+2
|
inverse of f(x)=-2sqrt(x)
|
inverse\:f(x)=-2\sqrt{x}
|
domain of f(x)= 1/(x^2+4x-32)
|
domain\:f(x)=\frac{1}{x^{2}+4x-32}
|
inverse of f(x)=e^{7x-6}
|
inverse\:f(x)=e^{7x-6}
|
inverse of (x-5)^3
|
inverse\:(x-5)^{3}
|
domain of 1/(x-4)
|
domain\:\frac{1}{x-4}
|
intercepts of f(x)=log_{5}(x-1)+4
|
intercepts\:f(x)=\log_{5}(x-1)+4
|
extreme points of 3x^{2/3}-x
|
extreme\:points\:3x^{\frac{2}{3}}-x
|
range of x^2-7x-30
|
range\:x^{2}-7x-30
|
monotone intervals f(x)=sqrt(x^2-1)
|
monotone\:intervals\:f(x)=\sqrt{x^{2}-1}
|
domain of f(x)=(2x+8)/(x^2-3x-18)
|
domain\:f(x)=\frac{2x+8}{x^{2}-3x-18}
|
domain of f(x)= 5/(2sqrt(4+5x))
|
domain\:f(x)=\frac{5}{2\sqrt{4+5x}}
|
shift 2cos(3x+(pi)/2)
|
shift\:2\cos(3x+\frac{\pi}{2})
|
domain of f(x)=((x-2))/((1-3x))
|
domain\:f(x)=\frac{(x-2)}{(1-3x)}
|
domain of y=x^2+4
|
domain\:y=x^{2}+4
|
domain of (x^2-x-2)/(x-2)
|
domain\:\frac{x^{2}-x-2}{x-2}
|
domain of f(x)=x^2-4x+3
|
domain\:f(x)=x^{2}-4x+3
|
asymptotes of 3sin(1/2 pi x)
|
asymptotes\:3\sin(\frac{1}{2}\pi\:x)
|
domain of (5x)/(6x-1)
|
domain\:\frac{5x}{6x-1}
|
inverse of-3x^2+3
|
inverse\:-3x^{2}+3
|