range of f(x)=(x^2+8x-9)/(x^2+3x-4)
|
range\:f(x)=\frac{x^{2}+8x-9}{x^{2}+3x-4}
|
critical points of 5x^2-20x+2
|
critical\:points\:5x^{2}-20x+2
|
inverse of f(x)=sqrt(x^2+6x)
|
inverse\:f(x)=\sqrt{x^{2}+6x}
|
parity f(x)= 1/(x+9)
|
parity\:f(x)=\frac{1}{x+9}
|
intercepts of (3x^2-14x-24)/((x^2+8)^2)
|
intercepts\:\frac{3x^{2}-14x-24}{(x^{2}+8)^{2}}
|
domain of f(x)=x^3-x
|
domain\:f(x)=x^{3}-x
|
inverse of (123)
|
inverse\:(123)
|
extreme points of f(x)= x/(x-2)
|
extreme\:points\:f(x)=\frac{x}{x-2}
|
perpendicular y=2x-7
|
perpendicular\:y=2x-7
|
domain of f(x)=3x^2-5
|
domain\:f(x)=3x^{2}-5
|
inverse of (x-1)^2
|
inverse\:(x-1)^{2}
|
domain of f(x)=sqrt(t-2)
|
domain\:f(x)=\sqrt{t-2}
|
range of 3/(x-4)
|
range\:\frac{3}{x-4}
|
inverse of f(x)=(-x)/(x-2)
|
inverse\:f(x)=\frac{-x}{x-2}
|
inverse of f(x)=(x+3)/(x+7)
|
inverse\:f(x)=\frac{x+3}{x+7}
|
slope intercept of 5x-3y=0
|
slope\:intercept\:5x-3y=0
|
domain of (-3/(2x^{3/2)})
|
domain\:(-\frac{3}{2x^{\frac{3}{2}}})
|
inverse of f(x)=-2/5 x+1
|
inverse\:f(x)=-\frac{2}{5}x+1
|
inverse of f(x)= 1/t+1
|
inverse\:f(x)=\frac{1}{t}+1
|
domain of f(x)=36x-35
|
domain\:f(x)=36x-35
|
slope intercept of 11x+20y=-16
|
slope\:intercept\:11x+20y=-16
|
range of sqrt(3-x)+sqrt(2-x)
|
range\:\sqrt{3-x}+\sqrt{2-x}
|
asymptotes of f(x)=(2x^2+4x)/(2x+2)
|
asymptotes\:f(x)=\frac{2x^{2}+4x}{2x+2}
|
inverse of log_{2}(x-3)
|
inverse\:\log_{2}(x-3)
|
inverse of 3x+4
|
inverse\:3x+4
|
range of \sqrt[3]{x}+2
|
range\:\sqrt[3]{x}+2
|
domain of f(x)= 1/(sqrt(x+4)-2)
|
domain\:f(x)=\frac{1}{\sqrt{x+4}-2}
|
range of 1/((x+2)^3)
|
range\:\frac{1}{(x+2)^{3}}
|
domain of (x^2+x)/(-2x^2-2x+12)
|
domain\:\frac{x^{2}+x}{-2x^{2}-2x+12}
|
domain of y=sqrt(9-x)
|
domain\:y=\sqrt{9-x}
|
inverse of 4-6x
|
inverse\:4-6x
|
critical points of f(x)=x^2+4x+4
|
critical\:points\:f(x)=x^{2}+4x+4
|
domain of f(x)=2e^{2x}
|
domain\:f(x)=2e^{2x}
|
range of (x^2+2)/(4x)
|
range\:\frac{x^{2}+2}{4x}
|
domain of log_{3}(x+6)
|
domain\:\log_{3}(x+6)
|
extreme points of f(x)=3x^3+14
|
extreme\:points\:f(x)=3x^{3}+14
|
amplitude of sin(3x)
|
amplitude\:\sin(3x)
|
slope of-4x-4
|
slope\:-4x-4
|
midpoint (-1/9 ,-1/2)(14/9 , 4/3)
|
midpoint\:(-\frac{1}{9},-\frac{1}{2})(\frac{14}{9},\frac{4}{3})
|
range of f(x)=e^{x-5}
|
range\:f(x)=e^{x-5}
|
critical points of f(x)=x
|
critical\:points\:f(x)=x
|
domain of f(x)=(x^2)/(x+8)
|
domain\:f(x)=\frac{x^{2}}{x+8}
|
inverse of f(x)=1+\sqrt[3]{x}
|
inverse\:f(x)=1+\sqrt[3]{x}
|
inverse of f(x)=k(x+2)
|
inverse\:f(x)=k(x+2)
|
inflection points of f(x)=xsqrt(x+6)
|
inflection\:points\:f(x)=x\sqrt{x+6}
|
extreme points of x^4+2x^3-3x^2-4x+4
|
extreme\:points\:x^{4}+2x^{3}-3x^{2}-4x+4
|
domain of f(x)=6x-38
|
domain\:f(x)=6x-38
|
asymptotes of f(x)=2\sqrt[4]{x}
|
asymptotes\:f(x)=2\sqrt[4]{x}
|
domain of f(x)=2^{x-1}
|
domain\:f(x)=2^{x-1}
|
domain of f(x)= 1/(x^2+4x+3)
|
domain\:f(x)=\frac{1}{x^{2}+4x+3}
|
inflection points of f(x)=x^2ln(x/4)
|
inflection\:points\:f(x)=x^{2}\ln(\frac{x}{4})
|
inflection points of f(x)=x^3-3x^2-9x+2
|
inflection\:points\:f(x)=x^{3}-3x^{2}-9x+2
|
inverse of y=1-x/8
|
inverse\:y=1-\frac{x}{8}
|
inverse of f(x)=\sqrt[4]{x}+6
|
inverse\:f(x)=\sqrt[4]{x}+6
|
domain of (sqrt(7+x))/(3-x)
|
domain\:\frac{\sqrt{7+x}}{3-x}
|
inverse of 2/3 (x-2)^3+6
|
inverse\:\frac{2}{3}(x-2)^{3}+6
|
domain of sec^2(x)
|
domain\:\sec^{2}(x)
|
slope intercept of x+4y=-8
|
slope\:intercept\:x+4y=-8
|
inverse of g(x)=2(x-1)
|
inverse\:g(x)=2(x-1)
|
domain of f(x)=\sqrt[5]{5x^2-10x}
|
domain\:f(x)=\sqrt[5]{5x^{2}-10x}
|
range of e^{1/x}
|
range\:e^{\frac{1}{x}}
|
intercepts of f(x)=(x-2)/(x^2-2x-8)
|
intercepts\:f(x)=\frac{x-2}{x^{2}-2x-8}
|
inflection points of f(x)=(x^2)/(x^2+9)
|
inflection\:points\:f(x)=\frac{x^{2}}{x^{2}+9}
|
inverse of (x^2+6)/2
|
inverse\:\frac{x^{2}+6}{2}
|
inverse of f(x)=(2x-1)/(x-1)
|
inverse\:f(x)=\frac{2x-1}{x-1}
|
inverse of-3/x
|
inverse\:-\frac{3}{x}
|
inverse of f(x)=(19-2x)/8
|
inverse\:f(x)=\frac{19-2x}{8}
|
intercepts of f(x)=(x^3+27)/(x^2+9)
|
intercepts\:f(x)=\frac{x^{3}+27}{x^{2}+9}
|
midpoint (2,4)(-4,7)
|
midpoint\:(2,4)(-4,7)
|
intercepts of f(x)=(x+5)^2(x-1)^3(x-2)
|
intercepts\:f(x)=(x+5)^{2}(x-1)^{3}(x-2)
|
domain of f(x)=1-2x^2
|
domain\:f(x)=1-2x^{2}
|
asymptotes of (8-x^3)/(2x^2)
|
asymptotes\:\frac{8-x^{3}}{2x^{2}}
|
extreme points of f(x)=-x^4+32x^2-256
|
extreme\:points\:f(x)=-x^{4}+32x^{2}-256
|
midpoint (-2,4)(3,9)
|
midpoint\:(-2,4)(3,9)
|
extreme points of f(x)=2x(500/3-4/3 x)
|
extreme\:points\:f(x)=2x(\frac{500}{3}-\frac{4}{3}x)
|
domain of f(x)=(x^2+x-2)/(x^2-1)
|
domain\:f(x)=\frac{x^{2}+x-2}{x^{2}-1}
|
slope intercept of y=-2x+2.5
|
slope\:intercept\:y=-2x+2.5
|
y=sqrt(x^2-4)
|
y=\sqrt{x^{2}-4}
|
slope of (2,4),m=-4
|
slope\:(2,4),m=-4
|
domain of P(t)=(sqrt(t-6))/(4t-28)
|
domain\:P(t)=\frac{\sqrt{t-6}}{4t-28}
|
domain of f(x)=x^2+6x+3
|
domain\:f(x)=x^{2}+6x+3
|
domain of y=sec(x)
|
domain\:y=\sec(x)
|
range of (6x)/(x+7)
|
range\:\frac{6x}{x+7}
|
inverse of x/(x+3)
|
inverse\:\frac{x}{x+3}
|
inflection points of x^3-12x+1
|
inflection\:points\:x^{3}-12x+1
|
parallel y=2.5x,\at (2,5)
|
parallel\:y=2.5x,\at\:(2,5)
|
perpendicular y= x/4-4,\at (-8,5)
|
perpendicular\:y=\frac{x}{4}-4,\at\:(-8,5)
|
slope of 2x+7y=13
|
slope\:2x+7y=13
|
slope intercept of 2y-4x=8
|
slope\:intercept\:2y-4x=8
|
domain of (x^2+5x+4)/(x^2+3x+2)
|
domain\:\frac{x^{2}+5x+4}{x^{2}+3x+2}
|
range of |x|+1
|
range\:|x|+1
|
inverse of y= 1/2 x-3
|
inverse\:y=\frac{1}{2}x-3
|
range of f(x)=3x^2-x-3
|
range\:f(x)=3x^{2}-x-3
|
intercepts of f(x)=4x^2+8x-11
|
intercepts\:f(x)=4x^{2}+8x-11
|
range of f(x)=(6x-6)/(x+2)
|
range\:f(x)=\frac{6x-6}{x+2}
|
asymptotes of f(x)=sin(x)
|
asymptotes\:f(x)=\sin(x)
|
domain of f(x)= 1/(sqrt(|x^3-x|))
|
domain\:f(x)=\frac{1}{\sqrt{|x^{3}-x|}}
|
domain of f(x)= 1/(8x-24)
|
domain\:f(x)=\frac{1}{8x-24}
|
amplitude of 2sin((pi)/2 x+2)-3
|
amplitude\:2\sin(\frac{\pi}{2}x+2)-3
|
inverse of 25(1/5)^{x-2}-1
|
inverse\:25(\frac{1}{5})^{x-2}-1
|