inverse of f(x)= 2/(5-x)
|
inverse\:f(x)=\frac{2}{5-x}
|
domain of f(x)=log_{3}(x-5)
|
domain\:f(x)=\log_{3}(x-5)
|
range of f(x)= 7/2 e^{-2x^2}
|
range\:f(x)=\frac{7}{2}e^{-2x^{2}}
|
inverse of f(x)=(4x)/(2-x)
|
inverse\:f(x)=\frac{4x}{2-x}
|
asymptotes of g(t)=(t-5)/(t^2+25)
|
asymptotes\:g(t)=\frac{t-5}{t^{2}+25}
|
midpoint (5.9,-2.6)(2.6,-5.9)
|
midpoint\:(5.9,-2.6)(2.6,-5.9)
|
inflection points of 3/4 (x^2-1)^{2/3}
|
inflection\:points\:\frac{3}{4}(x^{2}-1)^{\frac{2}{3}}
|
midpoint (2,-1)(-4,-3)
|
midpoint\:(2,-1)(-4,-3)
|
domain of (x+12)-(3/x)
|
domain\:(x+12)-(\frac{3}{x})
|
extreme points of f(x)=x^4-8x^2+2
|
extreme\:points\:f(x)=x^{4}-8x^{2}+2
|
domain of f(x)=(sqrt(x))/(x-2)
|
domain\:f(x)=\frac{\sqrt{x}}{x-2}
|
critical points of f(x)=7x^6-5x^5
|
critical\:points\:f(x)=7x^{6}-5x^{5}
|
domain of f(x)= 4/(x-7)
|
domain\:f(x)=\frac{4}{x-7}
|
domain of 4/(x+4)+sqrt(x)+1
|
domain\:\frac{4}{x+4}+\sqrt{x}+1
|
midpoint (5,-9)(-9,13)
|
midpoint\:(5,-9)(-9,13)
|
extreme points of f(x)=x^2+5x-14
|
extreme\:points\:f(x)=x^{2}+5x-14
|
asymptotes of (1/2)^{x-7}
|
asymptotes\:(\frac{1}{2})^{x-7}
|
inverse of 1/4
|
inverse\:\frac{1}{4}
|
domain of (5x)/(2+x)
|
domain\:\frac{5x}{2+x}
|
inverse of f(x)=log_{1/5}(x)
|
inverse\:f(x)=\log_{\frac{1}{5}}(x)
|
domain of f(x)=9^x
|
domain\:f(x)=9^{x}
|
intercepts of sqrt(x+3)
|
intercepts\:\sqrt{x+3}
|
domain of f(x)=5^x-9
|
domain\:f(x)=5^{x}-9
|
domain of f(x)= 1/((x+2)^3)
|
domain\:f(x)=\frac{1}{(x+2)^{3}}
|
monotone intervals x^{2/3}(x-5)
|
monotone\:intervals\:x^{\frac{2}{3}}(x-5)
|
asymptotes of (x+1)/(x^2-1)
|
asymptotes\:\frac{x+1}{x^{2}-1}
|
perpendicular 6
|
perpendicular\:6
|
slope of y=(-2x-1)/3
|
slope\:y=\frac{-2x-1}{3}
|
parity (9x-21)/(15x+35)
|
parity\:\frac{9x-21}{15x+35}
|
critical points of f(x)=-x^2-8x-8
|
critical\:points\:f(x)=-x^{2}-8x-8
|
extreme points of f(x)=x^4-2x^2
|
extreme\:points\:f(x)=x^{4}-2x^{2}
|
range of f(x)=x^3+4
|
range\:f(x)=x^{3}+4
|
intercepts of y=x^2-3
|
intercepts\:y=x^{2}-3
|
range of 6sin(1/6 x)
|
range\:6\sin(\frac{1}{6}x)
|
intercepts of f(x)=-10cos(10x+(pi)/3)
|
intercepts\:f(x)=-10\cos(10x+\frac{\pi}{3})
|
range of y=3x-6
|
range\:y=3x-6
|
inverse of cos^3(x)
|
inverse\:\cos^{3}(x)
|
inflection points of-8/(x^2)
|
inflection\:points\:-\frac{8}{x^{2}}
|
range of (cos(x))/(2+sin(x))
|
range\:\frac{\cos(x)}{2+\sin(x)}
|
inverse of f(x)=(x+4)/4
|
inverse\:f(x)=\frac{x+4}{4}
|
inverse of (2x+1)/3
|
inverse\:\frac{2x+1}{3}
|
asymptotes of (x-2)/(2x-4)
|
asymptotes\:\frac{x-2}{2x-4}
|
domain of f(x)=\sqrt[3]{3x+9}
|
domain\:f(x)=\sqrt[3]{3x+9}
|
monotone intervals 1/(2x+4)
|
monotone\:intervals\:\frac{1}{2x+4}
|
intercepts of f(x)=x^2+6x+8
|
intercepts\:f(x)=x^{2}+6x+8
|
asymptotes of f(x)=((2e^x))/(e^x-6)
|
asymptotes\:f(x)=\frac{(2e^{x})}{e^{x}-6}
|
line (-2/3 ,-1/3)(2, 1/2)
|
line\:(-\frac{2}{3},-\frac{1}{3})(2,\frac{1}{2})
|
midpoint (4,10)(8,4)
|
midpoint\:(4,10)(8,4)
|
domain of f(x)=(3x^2-10x+8)/(x-5)
|
domain\:f(x)=\frac{3x^{2}-10x+8}{x-5}
|
domain of 2/(-x+26)
|
domain\:\frac{2}{-x+26}
|
perpendicular y=4x+8,\at (4,8)
|
perpendicular\:y=4x+8,\at\:(4,8)
|
intercepts of f(x)=-x^2+4x-4
|
intercepts\:f(x)=-x^{2}+4x-4
|
symmetry y=x^3-1
|
symmetry\:y=x^{3}-1
|
inverse of f(x)=ln(x+3)
|
inverse\:f(x)=\ln(x+3)
|
slope of y=2x
|
slope\:y=2x
|
domain of f(x)=(t-1)/(t+1)
|
domain\:f(x)=\frac{t-1}{t+1}
|
inverse of (x-7)/3
|
inverse\:\frac{x-7}{3}
|
domain of (x^2)/(x-2)
|
domain\:\frac{x^{2}}{x-2}
|
critical points of f(x)=9x^3-3x
|
critical\:points\:f(x)=9x^{3}-3x
|
inverse of 1-(1/2)+(1/3)-(1/4)+(1/5)
|
inverse\:1-(\frac{1}{2})+(\frac{1}{3})-(\frac{1}{4})+(\frac{1}{5})
|
inverse of \sqrt[3]{6x}-2
|
inverse\:\sqrt[3]{6x}-2
|
parity (tan(4x))/x
|
parity\:\frac{\tan(4x)}{x}
|
domain of ,4sqrt(x-2)-8
|
domain\:,4\sqrt{x-2}-8
|
inverse of f(x)=14-x
|
inverse\:f(x)=14-x
|
inverse of y=-x^3+3
|
inverse\:y=-x^{3}+3
|
perpendicular 9x+12y+13=0
|
perpendicular\:9x+12y+13=0
|
intercepts of y=x^2-4
|
intercepts\:y=x^{2}-4
|
intercepts of y=6^x+3
|
intercepts\:y=6^{x}+3
|
inverse of f(x)= 1/3 x
|
inverse\:f(x)=\frac{1}{3}x
|
intercepts of (9-3x)/(x-5)
|
intercepts\:\frac{9-3x}{x-5}
|
intercepts of x^3+8
|
intercepts\:x^{3}+8
|
domain of x-1
|
domain\:x-1
|
y=4x-x^2
|
y=4x-x^{2}
|
domain of sqrt((x+5)/(x^2-4))
|
domain\:\sqrt{\frac{x+5}{x^{2}-4}}
|
inverse of ((x+2))/((x+6))
|
inverse\:\frac{(x+2)}{(x+6)}
|
domain of (2-x)e^{-x}-1
|
domain\:(2-x)e^{-x}-1
|
slope intercept of-x+4y=0
|
slope\:intercept\:-x+4y=0
|
slope of y=-2x+6y
|
slope\:y=-2x+6y
|
inverse of y=4x-8
|
inverse\:y=4x-8
|
inverse of f(x)=-5x^2
|
inverse\:f(x)=-5x^{2}
|
inverse of f(x)=-1/3 x+1
|
inverse\:f(x)=-\frac{1}{3}x+1
|
inverse of f(x)=(x-1)^2+2
|
inverse\:f(x)=(x-1)^{2}+2
|
extreme points of f(x)=3x4/5[-6,-3]
|
extreme\:points\:f(x)=3x4/5[-6,-3]
|
asymptotes of f(x)=(x+2)/(x^2-1)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}-1}
|
domain of (2-x^2)\div (x^2-9)
|
domain\:(2-x^{2})\div\:(x^{2}-9)
|
asymptotes of f(x)=2(1/2)^x
|
asymptotes\:f(x)=2(\frac{1}{2})^{x}
|
line (4,2)(3,5)
|
line\:(4,2)(3,5)
|
slope of f(y)=-4x-5
|
slope\:f(y)=-4x-5
|
extreme points of f(x)=x^2ln(x/8)
|
extreme\:points\:f(x)=x^{2}\ln(\frac{x}{8})
|
asymptotes of x^2-1
|
asymptotes\:x^{2}-1
|
inverse of f(x)= 1/2 x+16
|
inverse\:f(x)=\frac{1}{2}x+16
|
domain of f(x)=(sqrt(4x+7))/(9-x^2)
|
domain\:f(x)=\frac{\sqrt{4x+7}}{9-x^{2}}
|
domain of f(x)=sqrt(-2/3 (x-1/2))-3
|
domain\:f(x)=\sqrt{-\frac{2}{3}(x-\frac{1}{2})}-3
|
domain of f(x)=log_{10}(x+4)
|
domain\:f(x)=\log_{10}(x+4)
|
domain of f(x)=(x+7)/(24-sqrt(x^2-49))
|
domain\:f(x)=\frac{x+7}{24-\sqrt{x^{2}-49}}
|
domain of f(x)=(x+2)/(x^2+2)
|
domain\:f(x)=\frac{x+2}{x^{2}+2}
|
inverse of f(x)=(7-3x)/(x-2)
|
inverse\:f(x)=\frac{7-3x}{x-2}
|
range of f(x)=sqrt(x+3)*(8/x)
|
range\:f(x)=\sqrt{x+3}\cdot\:(\frac{8}{x})
|
domain of f(x)=e^{2x}
|
domain\:f(x)=e^{2x}
|
inverse of f(x)=-(0.4)^{x-6}
|
inverse\:f(x)=-(0.4)^{x-6}
|