inverse of f(x)= 1/4 x+2
|
inverse\:f(x)=\frac{1}{4}x+2
|
parallel-3
|
parallel\:-3
|
inverse of f(x)=(x-3)^{1/2}
|
inverse\:f(x)=(x-3)^{\frac{1}{2}}
|
asymptotes of f(x)=(3x)/(x^2+5)
|
asymptotes\:f(x)=\frac{3x}{x^{2}+5}
|
midpoint (-1,5)(5,5)
|
midpoint\:(-1,5)(5,5)
|
symmetry x^2-1
|
symmetry\:x^{2}-1
|
line (1,2),(-2,5)
|
line\:(1,2),(-2,5)
|
critical points of f(x)=x^3-3x+1
|
critical\:points\:f(x)=x^{3}-3x+1
|
slope intercept of x+5y=-5
|
slope\:intercept\:x+5y=-5
|
domain of 1/10
|
domain\:\frac{1}{10}
|
asymptotes of f(x)=(5x)/(x-3)
|
asymptotes\:f(x)=\frac{5x}{x-3}
|
inverse of f(x)=e^{2x+1}
|
inverse\:f(x)=e^{2x+1}
|
intercepts of 6x^2+6x-12
|
intercepts\:6x^{2}+6x-12
|
range of (2x)/(x^2-9)
|
range\:\frac{2x}{x^{2}-9}
|
periodicity of f(x)=cos(7x)
|
periodicity\:f(x)=\cos(7x)
|
domain of sqrt(x+2)-2
|
domain\:\sqrt{x+2}-2
|
range of 1/(x+4)+3
|
range\:\frac{1}{x+4}+3
|
inverse of y=-2x+5
|
inverse\:y=-2x+5
|
inverse of (490*e^{3x})/(4+e^{3x)}
|
inverse\:\frac{490\cdot\:e^{3x}}{4+e^{3x}}
|
extreme points of f(x)= 1/x
|
extreme\:points\:f(x)=\frac{1}{x}
|
inverse of f(x)=-7x^3
|
inverse\:f(x)=-7x^{3}
|
domain of f(x)=sqrt(1-1/(x^2+2x-3))
|
domain\:f(x)=\sqrt{1-\frac{1}{x^{2}+2x-3}}
|
intercepts of 3+x
|
intercepts\:3+x
|
critical points of-5x^2+118x+7
|
critical\:points\:-5x^{2}+118x+7
|
range of f(x)=log_{2}(2^x)
|
range\:f(x)=\log_{2}(2^{x})
|
inverse of f(x)=((2x+1))/(x-3)
|
inverse\:f(x)=\frac{(2x+1)}{x-3}
|
domain of f(x)=(5x)/(3x(x+12))
|
domain\:f(x)=\frac{5x}{3x(x+12)}
|
inverse of f(x)=e^{6x-5}
|
inverse\:f(x)=e^{6x-5}
|
asymptotes of f(x)=(x^3-9x)/(3x^2-6x-9)
|
asymptotes\:f(x)=\frac{x^{3}-9x}{3x^{2}-6x-9}
|
domain of f(x)=sqrt(5x)+(5x-6)
|
domain\:f(x)=\sqrt{5x}+(5x-6)
|
intercepts of f(x)=x^2+5x+6
|
intercepts\:f(x)=x^{2}+5x+6
|
inverse of g(x)=(3x-8)/(8x+1)
|
inverse\:g(x)=\frac{3x-8}{8x+1}
|
inverse of y=6x
|
inverse\:y=6x
|
inverse of x/(x-7)
|
inverse\:\frac{x}{x-7}
|
slope intercept of y=1
|
slope\:intercept\:y=1
|
domain of sqrt(x)+7
|
domain\:\sqrt{x}+7
|
inverse of y=e^{2x-3}
|
inverse\:y=e^{2x-3}
|
slope of 2x-5y=0
|
slope\:2x-5y=0
|
domain of f(x)=sqrt(6x-12)
|
domain\:f(x)=\sqrt{6x-12}
|
parity g(t)=(tan(x))/(\sqrt[4]{x^2-5x)}
|
parity\:g(t)=\frac{\tan(x)}{\sqrt[4]{x^{2}-5x}}
|
parity f(x)=(-4x-x^3-3)/(-5x^3+3x^2+4)
|
parity\:f(x)=\frac{-4x-x^{3}-3}{-5x^{3}+3x^{2}+4}
|
perpendicular y=9x-3,\at (9,4)
|
perpendicular\:y=9x-3,\at\:(9,4)
|
critical points of f(x)=x^3-12x-5
|
critical\:points\:f(x)=x^{3}-12x-5
|
slope intercept of 9x+2y=18
|
slope\:intercept\:9x+2y=18
|
domain of f(x)=(4x)/(x+1)
|
domain\:f(x)=\frac{4x}{x+1}
|
extreme points of f(x)=7x^3-3x^2+1
|
extreme\:points\:f(x)=7x^{3}-3x^{2}+1
|
inverse of-7cos(2x)
|
inverse\:-7\cos(2x)
|
inverse of y=1.1^x
|
inverse\:y=1.1^{x}
|
range of 1+ln(x-4)
|
range\:1+\ln(x-4)
|
distance (7,3),(-2,-2)
|
distance\:(7,3),(-2,-2)
|
intercepts of f(x)=(5x)/(4x^2-x-14)
|
intercepts\:f(x)=\frac{5x}{4x^{2}-x-14}
|
midpoint (6,7)(2,2)
|
midpoint\:(6,7)(2,2)
|
inverse of f(x)=7x+4
|
inverse\:f(x)=7x+4
|
domain of (2x^3+x^2-8x-4)/(x^2-3x+2)
|
domain\:\frac{2x^{3}+x^{2}-8x-4}{x^{2}-3x+2}
|
inverse of 2^{-x}+4
|
inverse\:2^{-x}+4
|
domain of-3x
|
domain\:-3x
|
domain of f(x)=8
|
domain\:f(x)=8
|
periodicity of-9/7 cos((pi x)/4)
|
periodicity\:-\frac{9}{7}\cos(\frac{\pi\:x}{4})
|
shift sin(6x)
|
shift\:\sin(6x)
|
inverse of f(x)=2(x+5)^{1/3}
|
inverse\:f(x)=2(x+5)^{\frac{1}{3}}
|
asymptotes of f(x)=(2x)/(x+4)
|
asymptotes\:f(x)=\frac{2x}{x+4}
|
critical points of (x^2-1)^3
|
critical\:points\:(x^{2}-1)^{3}
|
critical points of x^2e^{-3x}
|
critical\:points\:x^{2}e^{-3x}
|
range of f(x)=sqrt(x/4)
|
range\:f(x)=\sqrt{\frac{x}{4}}
|
midpoint (1.7,6.8)(-9.2,-12.1)
|
midpoint\:(1.7,6.8)(-9.2,-12.1)
|
slope intercept of y-5x=5
|
slope\:intercept\:y-5x=5
|
intercepts of f(x)=x-8
|
intercepts\:f(x)=x-8
|
asymptotes of (4x^2+1)/(x^2+x+16)
|
asymptotes\:\frac{4x^{2}+1}{x^{2}+x+16}
|
domain of f(x)=ln(x)+ln(3-x)
|
domain\:f(x)=\ln(x)+\ln(3-x)
|
parity f(x)=x^3-1/x
|
parity\:f(x)=x^{3}-\frac{1}{x}
|
asymptotes of y=(x^2)/(x-2)
|
asymptotes\:y=\frac{x^{2}}{x-2}
|
distance (-3,-11)(8,-42)
|
distance\:(-3,-11)(8,-42)
|
midpoint (-6,3)(10,3)
|
midpoint\:(-6,3)(10,3)
|
domain of f(x)=(4x^2+7x+27)/((x-3)(x+4))
|
domain\:f(x)=\frac{4x^{2}+7x+27}{(x-3)(x+4)}
|
inverse of y=-3/4 x+5
|
inverse\:y=-\frac{3}{4}x+5
|
inverse of f(x)=(4x)/(3-7x)
|
inverse\:f(x)=\frac{4x}{3-7x}
|
range of f(x)= 1/x+1
|
range\:f(x)=\frac{1}{x}+1
|
inverse of f(x)=ln(x^2-4)
|
inverse\:f(x)=\ln(x^{2}-4)
|
range of 4sqrt(x-2)-1
|
range\:4\sqrt{x-2}-1
|
domain of f(x)=ln(1-x)
|
domain\:f(x)=\ln(1-x)
|
extreme points of f(x)=x(1-x^2)^{1/2}
|
extreme\:points\:f(x)=x(1-x^{2})^{\frac{1}{2}}
|
inverse of f(x)=e^{sqrt(x+x^2)}
|
inverse\:f(x)=e^{\sqrt{x+x^{2}}}
|
inflection points of f(x)=x^2+8x+4
|
inflection\:points\:f(x)=x^{2}+8x+4
|
critical points of 8/(xsqrt(x^2-4))
|
critical\:points\:\frac{8}{x\sqrt{x^{2}-4}}
|
domain of f(x)=x+sqrt(x)+7
|
domain\:f(x)=x+\sqrt{x}+7
|
domain of (x+2)/4
|
domain\:\frac{x+2}{4}
|
inverse of-sqrt(x+5)
|
inverse\:-\sqrt{x+5}
|
domain of 2x^2+x
|
domain\:2x^{2}+x
|
domain of f(x)=((x^2-4x-12))/(x+1)
|
domain\:f(x)=\frac{(x^{2}-4x-12)}{x+1}
|
domain of sqrt(36-x^2)*sqrt(x+2)
|
domain\:\sqrt{36-x^{2}}\cdot\:\sqrt{x+2}
|
extreme points of f(x)=2x-5/(x^2)
|
extreme\:points\:f(x)=2x-\frac{5}{x^{2}}
|
midpoint (-6,-6)(3,5)
|
midpoint\:(-6,-6)(3,5)
|
domain of log_{2}(2x-2)-3
|
domain\:\log_{2}(2x-2)-3
|
extreme points of f(x)=310x^3-x^2-8x+48
|
extreme\:points\:f(x)=310x^{3}-x^{2}-8x+48
|
inverse of f(x)=x^2-10x
|
inverse\:f(x)=x^{2}-10x
|
critical points of f(x)=2x+5cos(x)
|
critical\:points\:f(x)=2x+5\cos(x)
|
asymptotes of f(x)=(5x)/(x-2)
|
asymptotes\:f(x)=\frac{5x}{x-2}
|
inverse of f(x)=3+x^3
|
inverse\:f(x)=3+x^{3}
|
slope intercept of y=5x-2
|
slope\:intercept\:y=5x-2
|
inverse of f(x)=x^2+7x
|
inverse\:f(x)=x^{2}+7x
|