domain of f(x)=(2x)/((x-3)^2)
|
domain\:f(x)=\frac{2x}{(x-3)^{2}}
|
intercepts of x^5
|
intercepts\:x^{5}
|
inverse of f(x)=13x-13
|
inverse\:f(x)=13x-13
|
slope intercept of 2x+2y=11
|
slope\:intercept\:2x+2y=11
|
domain of f(x)=3x+12
|
domain\:f(x)=3x+12
|
distance (-2,2)(-4,0)
|
distance\:(-2,2)(-4,0)
|
domain of 1/(sqrt(x^4+2)+74)
|
domain\:\frac{1}{\sqrt{x^{4}+2}+74}
|
inverse of y=3x^2-5
|
inverse\:y=3x^{2}-5
|
domain of f(x)= 1/((x^2-20))
|
domain\:f(x)=\frac{1}{(x^{2}-20)}
|
distance (-3.1,-2.8)(-4.92,-3.3)
|
distance\:(-3.1,-2.8)(-4.92,-3.3)
|
range of (x^3-x)/(x^2-6x+5)
|
range\:\frac{x^{3}-x}{x^{2}-6x+5}
|
domain of f(x)=5x^4+40x^3-x^2-8x
|
domain\:f(x)=5x^{4}+40x^{3}-x^{2}-8x
|
domain of f(x)=5(x+4)^2-1
|
domain\:f(x)=5(x+4)^{2}-1
|
domain of f(x)= 1/(x^2+1)
|
domain\:f(x)=\frac{1}{x^{2}+1}
|
midpoint (5,6)\land (1,3)
|
midpoint\:(5,6)\land\:(1,3)
|
domain of f(x)=ln(x^2-12x)
|
domain\:f(x)=\ln(x^{2}-12x)
|
critical points of f(x)=x^4-12x^3
|
critical\:points\:f(x)=x^{4}-12x^{3}
|
domain of f(x)=(cos(x))/(1-sin(x))
|
domain\:f(x)=\frac{\cos(x)}{1-\sin(x)}
|
monotone intervals 2x^2-3x+4
|
monotone\:intervals\:2x^{2}-3x+4
|
domain of f(x)=((x-5))/5
|
domain\:f(x)=\frac{(x-5)}{5}
|
slope intercept of x-3=0
|
slope\:intercept\:x-3=0
|
asymptotes of (x^2-1)/(x+5)
|
asymptotes\:\frac{x^{2}-1}{x+5}
|
inverse of 240
|
inverse\:240
|
asymptotes of f(x)=(x^2+7)/(x^2+9)
|
asymptotes\:f(x)=\frac{x^{2}+7}{x^{2}+9}
|
domain of y=6-x^8
|
domain\:y=6-x^{8}
|
range of f(x)=(x^2+5)/(x+1)
|
range\:f(x)=\frac{x^{2}+5}{x+1}
|
slope intercept of-8x-3y=9
|
slope\:intercept\:-8x-3y=9
|
midpoint (1.17,2013)(3.25,2015)
|
midpoint\:(1.17,2013)(3.25,2015)
|
inflection points of x^3-9x^2+15x+8
|
inflection\:points\:x^{3}-9x^{2}+15x+8
|
extreme points of f(x)=(x^2)/(x-8)
|
extreme\:points\:f(x)=\frac{x^{2}}{x-8}
|
domain of 3(x-9)
|
domain\:3(x-9)
|
symmetry y=11x^2-7x-24
|
symmetry\:y=11x^{2}-7x-24
|
domain of f(x)=(t-2)/(t+2)
|
domain\:f(x)=\frac{t-2}{t+2}
|
inverse of f(x)=y=-x
|
inverse\:f(x)=y=-x
|
domain of f(x)=-5/(2x^{3/2)}
|
domain\:f(x)=-\frac{5}{2x^{\frac{3}{2}}}
|
domain of sqrt(x(4-x))
|
domain\:\sqrt{x(4-x)}
|
domain of log_{2}(x-3)
|
domain\:\log_{2}(x-3)
|
range of x^3
|
range\:x^{3}
|
domain of f(x)=-x^2+2x-1
|
domain\:f(x)=-x^{2}+2x-1
|
inverse of f(x)=\sqrt[3]{(x^7)/4}-10
|
inverse\:f(x)=\sqrt[3]{\frac{x^{7}}{4}}-10
|
domain of f(x)=-2x^2+2x-3
|
domain\:f(x)=-2x^{2}+2x-3
|
amplitude of 4cos(x)
|
amplitude\:4\cos(x)
|
range of f(x)= 2/x
|
range\:f(x)=\frac{2}{x}
|
periodicity of y= 1/2 sec((pi x)/2)
|
periodicity\:y=\frac{1}{2}\sec(\frac{\pi\:x}{2})
|
inverse of 7/(3+e^x)
|
inverse\:\frac{7}{3+e^{x}}
|
symmetry x^2-6
|
symmetry\:x^{2}-6
|
inverse of f(x)= 1/3 x+2
|
inverse\:f(x)=\frac{1}{3}x+2
|
shift f(x)=-4sin(6x+(pi)/2)
|
shift\:f(x)=-4\sin(6x+\frac{\pi}{2})
|
y=-2x+5
|
y=-2x+5
|
line (3/(2,) 1/2)m=5
|
line\:(\frac{3}{2,}\frac{1}{2})m=5
|
inverse of f(x)=(10-3x)^{5/2}
|
inverse\:f(x)=(10-3x)^{\frac{5}{2}}
|
range of 3x+2
|
range\:3x+2
|
critical points of f(x)=4x^2+x+5
|
critical\:points\:f(x)=4x^{2}+x+5
|
inverse of f(x)=1.1^x
|
inverse\:f(x)=1.1^{x}
|
domain of 3^{(x+4)/2}*1/27
|
domain\:3^{\frac{x+4}{2}}\cdot\:\frac{1}{27}
|
inverse of x^2+8
|
inverse\:x^{2}+8
|
parallel y=2x+4
|
parallel\:y=2x+4
|
inverse of f(x)=8x^3+2
|
inverse\:f(x)=8x^{3}+2
|
intercepts of f(x)=-2/3 x-2
|
intercepts\:f(x)=-\frac{2}{3}x-2
|
midpoint (-2,-1)(0,9)
|
midpoint\:(-2,-1)(0,9)
|
midpoint (10,7)(2,10)
|
midpoint\:(10,7)(2,10)
|
inflection points of f(x)=7x^2ln(x/2)
|
inflection\:points\:f(x)=7x^{2}\ln(\frac{x}{2})
|
asymptotes of f(x)=(-3)/2
|
asymptotes\:f(x)=\frac{-3}{2}
|
inverse of f(x)=x^2-3x
|
inverse\:f(x)=x^{2}-3x
|
inverse of f(x)= 5/(8x)+25/8
|
inverse\:f(x)=\frac{5}{8x}+\frac{25}{8}
|
inflection points of x^4-50x^2+5
|
inflection\:points\:x^{4}-50x^{2}+5
|
extreme points of f(x)=x-1/x
|
extreme\:points\:f(x)=x-\frac{1}{x}
|
domain of f(x)=7sqrt(x)+2
|
domain\:f(x)=7\sqrt{x}+2
|
intercepts of f(x)=(-5x-10)/(x^2+2x)
|
intercepts\:f(x)=\frac{-5x-10}{x^{2}+2x}
|
domain of (1-x)/(2x-1)
|
domain\:\frac{1-x}{2x-1}
|
inverse of f(x)=(4+7x)/2
|
inverse\:f(x)=\frac{4+7x}{2}
|
range of f(x)=x^3+8
|
range\:f(x)=x^{3}+8
|
x^{1/4}
|
x^{\frac{1}{4}}
|
asymptotes of f(x)=((2+x^4))/(x^2-x^4)
|
asymptotes\:f(x)=\frac{(2+x^{4})}{x^{2}-x^{4}}
|
critical points of f(x)=y(1-y^2)
|
critical\:points\:f(x)=y(1-y^{2})
|
domain of f(x)=(4-x^2)/(2-x)
|
domain\:f(x)=\frac{4-x^{2}}{2-x}
|
extreme points of f(x)=x^3+3x^2+1
|
extreme\:points\:f(x)=x^{3}+3x^{2}+1
|
intercepts of f(x)=x^2(x-4)
|
intercepts\:f(x)=x^{2}(x-4)
|
inverse of f(x)=-3
|
inverse\:f(x)=-3
|
critical points of 2/((x+1)^2)
|
critical\:points\:\frac{2}{(x+1)^{2}}
|
intercepts of f(x)= x/(x^2-4)
|
intercepts\:f(x)=\frac{x}{x^{2}-4}
|
domain of f(x)=2x+10
|
domain\:f(x)=2x+10
|
extreme points of f(x)=x(x+3)
|
extreme\:points\:f(x)=x(x+3)
|
inverse of x^2-25
|
inverse\:x^{2}-25
|
inverse of f(x)=b^x
|
inverse\:f(x)=b^{x}
|
extreme points of f(x)=x^4-12x^3+16x^2+2
|
extreme\:points\:f(x)=x^{4}-12x^{3}+16x^{2}+2
|
slope intercept of 3x-5y=4
|
slope\:intercept\:3x-5y=4
|
range of f(x)= 1/(sqrt(x^2-4))
|
range\:f(x)=\frac{1}{\sqrt{x^{2}-4}}
|
inverse of f(x)=2sin(x+pi)-1
|
inverse\:f(x)=2\sin(x+\pi)-1
|
inverse of f(x)=(x^3+2)
|
inverse\:f(x)=(x^{3}+2)
|
midpoint (2,-7)(-9,5)
|
midpoint\:(2,-7)(-9,5)
|
domain of f(x)= 1/(3+e^x)
|
domain\:f(x)=\frac{1}{3+e^{x}}
|
critical points of f(x)=t^4+t^3+t^2+1
|
critical\:points\:f(x)=t^{4}+t^{3}+t^{2}+1
|
asymptotes of f(x)=(6x-6)/(x+2)
|
asymptotes\:f(x)=\frac{6x-6}{x+2}
|
domain of (1-7sqrt(x))/x
|
domain\:\frac{1-7\sqrt{x}}{x}
|
domain of f(x)= 1/(x^2+3x-54)
|
domain\:f(x)=\frac{1}{x^{2}+3x-54}
|
intercepts of y
|
intercepts\:y
|
domain of-(1/3)^x
|
domain\:-(\frac{1}{3})^{x}
|
domain of 1-tan(pi-x)
|
domain\:1-\tan(\pi-x)
|
domain of f(x)=ln(-x)
|
domain\:f(x)=\ln(-x)
|