critical points of x^4-16x^2
|
critical\:points\:x^{4}-16x^{2}
|
asymptotes of y=(x^2-x)/(x^2-9x+8)
|
asymptotes\:y=\frac{x^{2}-x}{x^{2}-9x+8}
|
inverse of f(x)=(x-1)^2,x>= 1
|
inverse\:f(x)=(x-1)^{2},x\ge\:1
|
domain of f(x)=(sqrt(x))/(x+2)
|
domain\:f(x)=\frac{\sqrt{x}}{x+2}
|
critical points of f(x)=2.5+4.2x-1.1x^2
|
critical\:points\:f(x)=2.5+4.2x-1.1x^{2}
|
range of 1/(x-3)
|
range\:\frac{1}{x-3}
|
inverse of y=4^{x+2}-2
|
inverse\:y=4^{x+2}-2
|
domain of f(x)=x-13
|
domain\:f(x)=x-13
|
domain of x^2-2x+3
|
domain\:x^{2}-2x+3
|
extreme points of 20t-40sqrt(t)+50
|
extreme\:points\:20t-40\sqrt{t}+50
|
range of f(x)=(x+2)/(x+3)
|
range\:f(x)=\frac{x+2}{x+3}
|
domain of x+9
|
domain\:x+9
|
extreme points of x^2-4x+2
|
extreme\:points\:x^{2}-4x+2
|
domain of (1-7x)/8
|
domain\:\frac{1-7x}{8}
|
monotone intervals (8x)/(x^2+1)
|
monotone\:intervals\:\frac{8x}{x^{2}+1}
|
domain of f(x)=sqrt((2x+1)/(x^2+2x-3))
|
domain\:f(x)=\sqrt{\frac{2x+1}{x^{2}+2x-3}}
|
asymptotes of (x^3+x^2)/(x^2-4)
|
asymptotes\:\frac{x^{3}+x^{2}}{x^{2}-4}
|
parity tan(x)^{1/2}dx
|
parity\:\tan(x)^{\frac{1}{2}}dx
|
inverse of f(x)=2x+13
|
inverse\:f(x)=2x+13
|
inverse of f(x)=x^3-8
|
inverse\:f(x)=x^{3}-8
|
extreme points of f(x)=xe^{1/(x^2)}
|
extreme\:points\:f(x)=xe^{\frac{1}{x^{2}}}
|
domain of f(x)=(x^2)/(7x^2+7)
|
domain\:f(x)=\frac{x^{2}}{7x^{2}+7}
|
extreme points of x^2-4x+4
|
extreme\:points\:x^{2}-4x+4
|
range of f(x)=(2x+3)/(x-4)
|
range\:f(x)=(2x+3)/(x-4)
|
inverse of f(x)=(4x)/(x-7)
|
inverse\:f(x)=\frac{4x}{x-7}
|
symmetry 3x^2+7x+5v(H,K)
|
symmetry\:3x^{2}+7x+5v(H,K)
|
asymptotes of y=(3x^2-3x)/(x^2+x-12)
|
asymptotes\:y=\frac{3x^{2}-3x}{x^{2}+x-12}
|
distance (-10,-7)(2,-16)
|
distance\:(-10,-7)(2,-16)
|
parity f(x)=x+1+1/x
|
parity\:f(x)=x+1+\frac{1}{x}
|
line (0,2765),(350,8890)
|
line\:(0,2765),(350,8890)
|
domain of f(x)=sqrt(16-x^2)+sqrt(x+3)
|
domain\:f(x)=\sqrt{16-x^{2}}+\sqrt{x+3}
|
inverse of f(x)=y=5x+1/3
|
inverse\:f(x)=y=5x+\frac{1}{3}
|
inverse of y=x^2+2
|
inverse\:y=x^{2}+2
|
asymptotes of f(x)=(4x-4)/(x+2)
|
asymptotes\:f(x)=\frac{4x-4}{x+2}
|
inverse of f(x)= 1/6 x^3-4
|
inverse\:f(x)=\frac{1}{6}x^{3}-4
|
range of 8^x
|
range\:8^{x}
|
domain of f(x)=((4x-3))/(-7x^2)
|
domain\:f(x)=\frac{(4x-3)}{-7x^{2}}
|
parity f(x)=xsqrt(4-x^2)
|
parity\:f(x)=x\sqrt{4-x^{2}}
|
domain of f(x)=(2y-9)/(8y+9)
|
domain\:f(x)=\frac{2y-9}{8y+9}
|
inverse of 3(x+2)^2-6
|
inverse\:3(x+2)^{2}-6
|
inverse of f(x)=\sqrt[3]{3x-5}
|
inverse\:f(x)=\sqrt[3]{3x-5}
|
domain of f(x)=sqrt(\sqrt{x-5)-5}
|
domain\:f(x)=\sqrt{\sqrt{x-5}-5}
|
domain of f(x)=1+tan^2(x)
|
domain\:f(x)=1+\tan^{2}(x)
|
domain of f(x)=x^2-4x+7
|
domain\:f(x)=x^{2}-4x+7
|
domain of f(x)=sqrt(12-2x)
|
domain\:f(x)=\sqrt{12-2x}
|
asymptotes of f(x)=3^x+1
|
asymptotes\:f(x)=3^{x}+1
|
monotone intervals f(x)=x^5-5x
|
monotone\:intervals\:f(x)=x^{5}-5x
|
slope intercept of 3x-6y=6
|
slope\:intercept\:3x-6y=6
|
asymptotes of (2x^2)/((x+2)(x-3))
|
asymptotes\:\frac{2x^{2}}{(x+2)(x-3)}
|
inverse of f(x)=(x-2)^2,x>= 2
|
inverse\:f(x)=(x-2)^{2},x\ge\:2
|
domain of f(x)=-1+sqrt(x+2)
|
domain\:f(x)=-1+\sqrt{x+2}
|
domain of x/(x^2+16)
|
domain\:\frac{x}{x^{2}+16}
|
domain of f(x)=-(1\div sqrt(x-9))
|
domain\:f(x)=-(1\div\:\sqrt{x-9})
|
parity f(x)=6x^6+4x^4-3x^2+2
|
parity\:f(x)=6x^{6}+4x^{4}-3x^{2}+2
|
inverse of f(x)=-6x-11
|
inverse\:f(x)=-6x-11
|
inverse of f(x)=(x+6)/(x-2)
|
inverse\:f(x)=\frac{x+6}{x-2}
|
domain of f(x)=log_{2}(7-x)
|
domain\:f(x)=\log_{2}(7-x)
|
asymptotes of f(x)= 1/(x+6)
|
asymptotes\:f(x)=\frac{1}{x+6}
|
slope intercept of 2/3
|
slope\:intercept\:\frac{2}{3}
|
domain of f(x)=sqrt(7x+35)
|
domain\:f(x)=\sqrt{7x+35}
|
inverse of 5/(2x+8)
|
inverse\:\frac{5}{2x+8}
|
inverse of f(x)=20x
|
inverse\:f(x)=20x
|
critical points of (1/3)^x
|
critical\:points\:(\frac{1}{3})^{x}
|
asymptotes of f(x)=(sqrt(4x^2+2))/(2x-1)
|
asymptotes\:f(x)=\frac{\sqrt{4x^{2}+2}}{2x-1}
|
extreme points of-4x^4+3x^3+3x^2
|
extreme\:points\:-4x^{4}+3x^{3}+3x^{2}
|
asymptotes of f(x)=(3x-1)/((2x+3)(2x-3))
|
asymptotes\:f(x)=\frac{3x-1}{(2x+3)(2x-3)}
|
distance (-4,2)(2,4)
|
distance\:(-4,2)(2,4)
|
domain of f(x)=(x^2+1+8x)/(x^2+1+2x)
|
domain\:f(x)=\frac{x^{2}+1+8x}{x^{2}+1+2x}
|
intercepts of f(x)=x^2-2x+3
|
intercepts\:f(x)=x^{2}-2x+3
|
domain of f(x)=(2(-x^2+1))/((x^2+1)^2)
|
domain\:f(x)=\frac{2(-x^{2}+1)}{(x^{2}+1)^{2}}
|
inflection points of f(x)=-x^2+8x+8
|
inflection\:points\:f(x)=-x^{2}+8x+8
|
inverse of f(x)=-4x^2-2
|
inverse\:f(x)=-4x^{2}-2
|
inverse of f(x)=6(x-9)
|
inverse\:f(x)=6(x-9)
|
asymptotes of (x^2+x+1)/x
|
asymptotes\:\frac{x^{2}+x+1}{x}
|
extreme points of f(x)=sqrt(x^2+2)
|
extreme\:points\:f(x)=\sqrt{x^{2}+2}
|
domain of f(x)=(-x^2+9x+1)/(2x^2+14x+24)
|
domain\:f(x)=\frac{-x^{2}+9x+1}{2x^{2}+14x+24}
|
slope of-8
|
slope\:-8
|
range of log_{a}(x)
|
range\:\log_{a}(x)
|
domain of f(x)=(x+9)^2
|
domain\:f(x)=(x+9)^{2}
|
domain of f(x)=-9/(2t^{(3/2))}
|
domain\:f(x)=-\frac{9}{2t^{(\frac{3}{2})}}
|
f(x)=e^{-x}
|
f(x)=e^{-x}
|
asymptotes of f(x)=(9e^x)/(e^x-8)
|
asymptotes\:f(x)=\frac{9e^{x}}{e^{x}-8}
|
slope intercept of m=5(0,1)
|
slope\:intercept\:m=5(0,1)
|
midpoint (-19,-17)(4,-9)
|
midpoint\:(-19,-17)(4,-9)
|
periodicity of 4sin(-2x)
|
periodicity\:4\sin(-2x)
|
asymptotes of y=(4x^2-21x+5)/(x^2-12)
|
asymptotes\:y=\frac{4x^{2}-21x+5}{x^{2}-12}
|
slope intercept of-5-4
|
slope\:intercept\:-5-4
|
inverse of f(x)=6(x-2)
|
inverse\:f(x)=6(x-2)
|
domain of f(x)=sqrt(2x-9)
|
domain\:f(x)=\sqrt{2x-9}
|
asymptotes of f(x)=(x^2)/(1-x)
|
asymptotes\:f(x)=\frac{x^{2}}{1-x}
|
domain of f(x)=(x+2)/(sqrt(x+4)-3)
|
domain\:f(x)=\frac{x+2}{\sqrt{x+4}-3}
|
shift y=-5sin(4x+(pi)/2)
|
shift\:y=-5\sin(4x+\frac{\pi}{2})
|
slope intercept of y-8=3(x-5)
|
slope\:intercept\:y-8=3(x-5)
|
domain of f(x)=(sqrt(x))/(x-5)
|
domain\:f(x)=\frac{\sqrt{x}}{x-5}
|
inverse of f(x)=2*\sqrt[5]{8x-5}
|
inverse\:f(x)=2\cdot\:\sqrt[5]{8x-5}
|
range of f(x)=sqrt(6x^2+5x-21)
|
range\:f(x)=\sqrt{6x^{2}+5x-21}
|
midpoint (2,3)(-3,-2)
|
midpoint\:(2,3)(-3,-2)
|
inverse of f(x)=3x^2-5
|
inverse\:f(x)=3x^{2}-5
|
inverse of ln(x-1)
|
inverse\:\ln(x-1)
|
shift f(x)=2sin(1/3 x-pi)-4
|
shift\:f(x)=2\sin(\frac{1}{3}x-\pi)-4
|