domain of f(x)=sqrt((x+1)/(x^2-3x+2))
|
domain\:f(x)=\sqrt{\frac{x+1}{x^{2}-3x+2}}
|
parallel 7x+3y=9
|
parallel\:7x+3y=9
|
parallel 9x-y=9,\at (8,6)
|
parallel\:9x-y=9,\at\:(8,6)
|
perpendicular 1
|
perpendicular\:1
|
asymptotes of f(x)=((4-2x))/((3x-1))
|
asymptotes\:f(x)=\frac{(4-2x)}{(3x-1)}
|
domain of f(x)=(x^2+3x-4)/(x^2+5x-14)
|
domain\:f(x)=\frac{x^{2}+3x-4}{x^{2}+5x-14}
|
intercepts of f(x)=2x+6y=2
|
intercepts\:f(x)=2x+6y=2
|
range of 3x-4
|
range\:3x-4
|
inverse of y=3-x^3
|
inverse\:y=3-x^{3}
|
range of sqrt(x)-8
|
range\:\sqrt{x}-8
|
critical points of f(x)=x^3+x
|
critical\:points\:f(x)=x^{3}+x
|
slope of 21x+7y=14
|
slope\:21x+7y=14
|
domain of h(x)=sqrt(x+5)
|
domain\:h(x)=\sqrt{x+5}
|
parallel Y=-1/5 x-6,\at (-5,3)
|
parallel\:Y=-\frac{1}{5}x-6,\at\:(-5,3)
|
slope intercept of 16x+14y=-12
|
slope\:intercept\:16x+14y=-12
|
inflection points of f(x)=(e^x)/(5+e^x)
|
inflection\:points\:f(x)=\frac{e^{x}}{5+e^{x}}
|
domain of f(x)=\sqrt[3]{4x}
|
domain\:f(x)=\sqrt[3]{4x}
|
asymptotes of f(x)=(x+2)/(x^2-4)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}-4}
|
domain of f(x)=(4+x)/(x+5)
|
domain\:f(x)=\frac{4+x}{x+5}
|
domain of f(x)=e^{-x^2}
|
domain\:f(x)=e^{-x^{2}}
|
asymptotes of f(x)=(x^2)/(x-6)
|
asymptotes\:f(x)=\frac{x^{2}}{x-6}
|
domain of x^2-8x+12
|
domain\:x^{2}-8x+12
|
domain of sqrt((x^2-16)/(x^2+169))
|
domain\:\sqrt{\frac{x^{2}-16}{x^{2}+169}}
|
inflection points of f(x)=x^3-3x^2-45x
|
inflection\:points\:f(x)=x^{3}-3x^{2}-45x
|
inverse of R240
|
inverse\:R240
|
domain of g(x)=(sqrt(x-5))/(x-10)
|
domain\:g(x)=\frac{\sqrt{x-5}}{x-10}
|
slope of y=1075x+9396
|
slope\:y=1075x+9396
|
domain of f(x)=sqrt(4-x^2)+sqrt(x+1)
|
domain\:f(x)=\sqrt{4-x^{2}}+\sqrt{x+1}
|
amplitude of f(x)=3-5cos(5x)
|
amplitude\:f(x)=3-5\cos(5x)
|
inverse of (x+2)/(5x-1)
|
inverse\:\frac{x+2}{5x-1}
|
inflection points of f(x)=(x^2)/(x-1)
|
inflection\:points\:f(x)=\frac{x^{2}}{x-1}
|
range of 2-sqrt(4-x)
|
range\:2-\sqrt{4-x}
|
domain of f(x)= 3/(x^2-25)
|
domain\:f(x)=\frac{3}{x^{2}-25}
|
domain of f(x)=-x^3+9x^2-20x
|
domain\:f(x)=-x^{3}+9x^{2}-20x
|
domain of ln(1/(x-2))
|
domain\:\ln(\frac{1}{x-2})
|
parallel 3x+y=-6
|
parallel\:3x+y=-6
|
asymptotes of f(x)=(10)/(x^2-7x+10)
|
asymptotes\:f(x)=\frac{10}{x^{2}-7x+10}
|
domain of f(x)=sqrt(7-6x)
|
domain\:f(x)=\sqrt{7-6x}
|
parallel 7x+2y=24(-2,-10)
|
parallel\:7x+2y=24(-2,-10)
|
inverse of x+7
|
inverse\:x+7
|
inverse of f(x)=x(x-1)
|
inverse\:f(x)=x(x-1)
|
intercepts of f(x)=x^2+4x-24
|
intercepts\:f(x)=x^{2}+4x-24
|
inverse of f(x)= 2/3 x
|
inverse\:f(x)=\frac{2}{3}x
|
domain of f(x)=(-3,5),(2,0),(7-5)
|
domain\:f(x)=(-3,5),(2,0),(7-5)
|
slope intercept of 3x-2y=6
|
slope\:intercept\:3x-2y=6
|
slope of 3x=-y-5
|
slope\:3x=-y-5
|
domain of f(x)=-sqrt(1-x)
|
domain\:f(x)=-\sqrt{1-x}
|
inverse of (4x-2)/(3x+1)
|
inverse\:\frac{4x-2}{3x+1}
|
inverse of f(x)= 1/(x+2)+5
|
inverse\:f(x)=\frac{1}{x+2}+5
|
parity f(x)=3x
|
parity\:f(x)=3x
|
inverse of (x+5)^2
|
inverse\:(x+5)^{2}
|
midpoint (-5,-6)(-6,-2)
|
midpoint\:(-5,-6)(-6,-2)
|
symmetry y=x4-x2+4
|
symmetry\:y=x4-x2+4
|
domain of x/(x-4)
|
domain\:\frac{x}{x-4}
|
slope intercept of 3x-y=3
|
slope\:intercept\:3x-y=3
|
inverse of f(x)=\sqrt[3]{x+11}
|
inverse\:f(x)=\sqrt[3]{x+11}
|
range of 4/(3-t)
|
range\:\frac{4}{3-t}
|
x^4+1
|
x^{4}+1
|
inverse of f(x)= x/(x+4)
|
inverse\:f(x)=\frac{x}{x+4}
|
line (-2,)(2,)
|
line\:(-2,)(2,)
|
periodicity of 1/2 csc(x)
|
periodicity\:\frac{1}{2}\csc(x)
|
domain of f(x)=(x^2+1+20x)/(x^2+2x+1)
|
domain\:f(x)=\frac{x^{2}+1+20x}{x^{2}+2x+1}
|
inverse of f(x)=2x+24
|
inverse\:f(x)=2x+24
|
domain of sqrt(x^2-5x+6)
|
domain\:\sqrt{x^{2}-5x+6}
|
intercepts of (2x^2-4x)/(x^2+4x+4)
|
intercepts\:\frac{2x^{2}-4x}{x^{2}+4x+4}
|
inverse of f(x)= x/(4x-1)
|
inverse\:f(x)=\frac{x}{4x-1}
|
inverse of f(x)=5+sqrt(1+x)
|
inverse\:f(x)=5+\sqrt{1+x}
|
domain of sqrt(5-x)+sqrt(x^2-4)
|
domain\:\sqrt{5-x}+\sqrt{x^{2}-4}
|
asymptotes of f(x)=(x^2+5x-3)/(4x-1)
|
asymptotes\:f(x)=\frac{x^{2}+5x-3}{4x-1}
|
extreme points of f(x)=-2x^2-6x+20
|
extreme\:points\:f(x)=-2x^{2}-6x+20
|
slope of f(x)=pi
|
slope\:f(x)=\pi
|
domain of (x-2)^2+3
|
domain\:(x-2)^{2}+3
|
monotone intervals 2x^6-3x^5
|
monotone\:intervals\:2x^{6}-3x^{5}
|
inverse of f(x)= 1/((x+10))
|
inverse\:f(x)=\frac{1}{(x+10)}
|
inverse of (2x+3)/(x+2)
|
inverse\:\frac{2x+3}{x+2}
|
critical points of f(x)=xe^{-3x}
|
critical\:points\:f(x)=xe^{-3x}
|
intercepts of f(x)=6x+3y=2100
|
intercepts\:f(x)=6x+3y=2100
|
inverse of f(x)=-x^2-4
|
inverse\:f(x)=-x^{2}-4
|
inverse of \sqrt[3]{x}
|
inverse\:\sqrt[3]{x}
|
domain of-1-1/(x^2-4)
|
domain\:-1-\frac{1}{x^{2}-4}
|
domain of f(x)=6x-x^2-5
|
domain\:f(x)=6x-x^{2}-5
|
domain of f(x)=2x^3-x^2+2x-1
|
domain\:f(x)=2x^{3}-x^{2}+2x-1
|
domain of ln(x+6)
|
domain\:\ln(x+6)
|
asymptotes of f(x)=(2x^2+6x)/(x^2+4x+3)
|
asymptotes\:f(x)=\frac{2x^{2}+6x}{x^{2}+4x+3}
|
parity f(x)=x^5+3x^2-5x+4
|
parity\:f(x)=x^{5}+3x^{2}-5x+4
|
critical points of f(x)=(x^3)/((x-4))
|
critical\:points\:f(x)=\frac{x^{3}}{(x-4)}
|
extreme points of f(x)=(e^x-e^{-x})/2
|
extreme\:points\:f(x)=\frac{e^{x}-e^{-x}}{2}
|
inverse of f(x)=9x-7
|
inverse\:f(x)=9x-7
|
asymptotes of f(x)=arctan(x)
|
asymptotes\:f(x)=\arctan(x)
|
asymptotes of (2x^2+1)/(x+3)
|
asymptotes\:\frac{2x^{2}+1}{x+3}
|
asymptotes of f(x)=(3x-3)/(x^2-4)
|
asymptotes\:f(x)=\frac{3x-3}{x^{2}-4}
|
intercepts of 16x^3-80x^2-x+5
|
intercepts\:16x^{3}-80x^{2}-x+5
|
inflection points of f(x)=4x^3-5x^2+2x-1
|
inflection\:points\:f(x)=4x^{3}-5x^{2}+2x-1
|
midpoint (-2,3)(4,1)
|
midpoint\:(-2,3)(4,1)
|
domain of f(x)=sqrt(11-4x)
|
domain\:f(x)=\sqrt{11-4x}
|
v= 4/3 pir^3
|
v=\frac{4}{3}πr^{3}
|
domain of y=2x^2+5x+1
|
domain\:y=2x^{2}+5x+1
|
inverse of f(x)=2log_{3}(x-5)
|
inverse\:f(x)=2\log_{3}(x-5)
|
asymptotes of f(x)=(x^2+6x)/(2x-12)
|
asymptotes\:f(x)=\frac{x^{2}+6x}{2x-12}
|
extreme points of y=x+4/x
|
extreme\:points\:y=x+\frac{4}{x}
|