intercepts of y=x+1
|
intercepts\:y=x+1
|
range of f(x)=x^7
|
range\:f(x)=x^{7}
|
inflection points of x^2-5x+3
|
inflection\:points\:x^{2}-5x+3
|
slope of m=(0-5-0)/(0-5-0)
|
slope\:m=\frac{0-5-0}{0-5-0}
|
domain of f(x)= x/(sqrt(x-2))
|
domain\:f(x)=\frac{x}{\sqrt{x-2}}
|
inverse of e^{2x}
|
inverse\:e^{2x}
|
asymptotes of y=(x^2+4x+3)/(x^2+3x)
|
asymptotes\:y=\frac{x^{2}+4x+3}{x^{2}+3x}
|
inverse of f(x)=(x+3)^3-2
|
inverse\:f(x)=(x+3)^{3}-2
|
inverse of f(x)=(5-9t)^{9/2}
|
inverse\:f(x)=(5-9t)^{\frac{9}{2}}
|
intercepts of f(x)=-(3x^2+1)^3
|
intercepts\:f(x)=-(3x^{2}+1)^{3}
|
domain of (1+x)/(1+x+x^2)
|
domain\:\frac{1+x}{1+x+x^{2}}
|
midpoint (-4,3)(-5,7)
|
midpoint\:(-4,3)(-5,7)
|
domain of \sqrt[3]{-2x-8}
|
domain\:\sqrt[3]{-2x-8}
|
domain of f(x)=3x^3+9x^2-3x-9
|
domain\:f(x)=3x^{3}+9x^{2}-3x-9
|
slope intercept of x+4y=16
|
slope\:intercept\:x+4y=16
|
inverse of y=(x+4)^2
|
inverse\:y=(x+4)^{2}
|
intercepts of f(x)=(x-3)/(-2x-5)
|
intercepts\:f(x)=\frac{x-3}{-2x-5}
|
slope intercept of 5x+4y=32
|
slope\:intercept\:5x+4y=32
|
asymptotes of f(x)=(4x+1)/(9x^2+1)
|
asymptotes\:f(x)=\frac{4x+1}{9x^{2}+1}
|
range of (x+3)/4
|
range\:\frac{x+3}{4}
|
inverse of f(x)=(x+1)^2-3
|
inverse\:f(x)=(x+1)^{2}-3
|
domain of f(x)=9x+7
|
domain\:f(x)=9x+7
|
inflection points of f(x)=x^4-2x^3
|
inflection\:points\:f(x)=x^{4}-2x^{3}
|
slope intercept of 5x+6y=5
|
slope\:intercept\:5x+6y=5
|
extreme points of x+sqrt(1-x)
|
extreme\:points\:x+\sqrt{1-x}
|
critical points of 2x^3-2x^2+7x+5
|
critical\:points\:2x^{3}-2x^{2}+7x+5
|
range of y=9sqrt(x)+4
|
range\:y=9\sqrt{x}+4
|
line (0,0),(4,5)
|
line\:(0,0),(4,5)
|
asymptotes of (8x^2+1)/(4x^3-2x^2+1)
|
asymptotes\:\frac{8x^{2}+1}{4x^{3}-2x^{2}+1}
|
extreme points of f(x)=(x-2)/(x^2+3x+6)
|
extreme\:points\:f(x)=\frac{x-2}{x^{2}+3x+6}
|
domain of (6-x)/(x-4)
|
domain\:\frac{6-x}{x-4}
|
line y=-x-7
|
line\:y=-x-7
|
line (-3,3)(4,4)
|
line\:(-3,3)(4,4)
|
range of-8csc((pi)/3 x)
|
range\:-8\csc(\frac{\pi}{3}x)
|
asymptotes of f(x)=(x^2-4x)/(x^2-16)
|
asymptotes\:f(x)=\frac{x^{2}-4x}{x^{2}-16}
|
critical points of x^3-e^{0.5x}
|
critical\:points\:x^{3}-e^{0.5x}
|
domain of f(x)=(-6)/(x+3)
|
domain\:f(x)=\frac{-6}{x+3}
|
inverse of 5/(x-4)+2
|
inverse\:\frac{5}{x-4}+2
|
inverse of f(x)=0.9(x-7)-8
|
inverse\:f(x)=0.9(x-7)-8
|
slope intercept of 8x+2y=8
|
slope\:intercept\:8x+2y=8
|
slope of y-3=2(x+1)
|
slope\:y-3=2(x+1)
|
domain of 2^x-7
|
domain\:2^{x}-7
|
asymptotes of f(x)=(2x+1)/(3x^2)
|
asymptotes\:f(x)=\frac{2x+1}{3x^{2}}
|
inverse of f(x)=((-2x))/((x-1))
|
inverse\:f(x)=\frac{(-2x)}{(x-1)}
|
midpoint (-4,0)(0,-8)
|
midpoint\:(-4,0)(0,-8)
|
domain of sqrt(3x+24)
|
domain\:\sqrt{3x+24}
|
asymptotes of f(x)= 1/(x-5)+3
|
asymptotes\:f(x)=\frac{1}{x-5}+3
|
slope intercept of y=2x-2
|
slope\:intercept\:y=2x-2
|
asymptotes of 1/x
|
asymptotes\:\frac{1}{x}
|
inflection points of (x^2-16)^6
|
inflection\:points\:(x^{2}-16)^{6}
|
range of-sqrt(x+4)
|
range\:-\sqrt{x+4}
|
domain of f(x)=sqrt(2+x+x^2)
|
domain\:f(x)=\sqrt{2+x+x^{2}}
|
line (22,38),(3,9)
|
line\:(22,38),(3,9)
|
asymptotes of f(x)=(x^2-9)/(x+1)
|
asymptotes\:f(x)=\frac{x^{2}-9}{x+1}
|
inverse of f(x)=sqrt(x)-5
|
inverse\:f(x)=\sqrt{x}-5
|
critical points of f(x)=t^4-8t^3+10t^2
|
critical\:points\:f(x)=t^{4}-8t^{3}+10t^{2}
|
domain of f(x)=(x^3-x)/(x^3-x^2-2x)
|
domain\:f(x)=\frac{x^{3}-x}{x^{3}-x^{2}-2x}
|
critical points of f(x)=4x^2-6x^4
|
critical\:points\:f(x)=4x^{2}-6x^{4}
|
parallel (8,-7)x-5y-3=0
|
parallel\:(8,-7)x-5y-3=0
|
intercepts of y=3x+1
|
intercepts\:y=3x+1
|
asymptotes of f(x)= x/(x^2+20)
|
asymptotes\:f(x)=\frac{x}{x^{2}+20}
|
extreme points of f(x)=x^4-18x^2+81
|
extreme\:points\:f(x)=x^{4}-18x^{2}+81
|
domain of 2/((x-4)(-x-6))
|
domain\:\frac{2}{(x-4)(-x-6)}
|
domain of f(x)=3x^2+2x-2
|
domain\:f(x)=3x^{2}+2x-2
|
midpoint (-10,2)(3,5)
|
midpoint\:(-10,2)(3,5)
|
inflection points of x^2-x-ln(x)
|
inflection\:points\:x^{2}-x-\ln(x)
|
critical points of f(x)=x^{7/2}-3x^2
|
critical\:points\:f(x)=x^{\frac{7}{2}}-3x^{2}
|
range of 1/(2x^2-x-6)
|
range\:\frac{1}{2x^{2}-x-6}
|
amplitude of y=tan(x)
|
amplitude\:y=\tan(x)
|
inflection points of x^3-12x^2-27x+2
|
inflection\:points\:x^{3}-12x^{2}-27x+2
|
domain of (sqrt(2+x))/(x-5)
|
domain\:\frac{\sqrt{2+x}}{x-5}
|
domain of (1-2x)/(x+1)
|
domain\:\frac{1-2x}{x+1}
|
extreme points of f(x)=2x^2+4x-3
|
extreme\:points\:f(x)=2x^{2}+4x-3
|
inverse of f(x)=10x+9
|
inverse\:f(x)=10x+9
|
domain of f(x)=-3x-4
|
domain\:f(x)=-3x-4
|
range of (2x-2)/(x+2)
|
range\:\frac{2x-2}{x+2}
|
perpendicular y= 1/3 x
|
perpendicular\:y=\frac{1}{3}x
|
domain of f(x)=\sqrt[9]{x}
|
domain\:f(x)=\sqrt[9]{x}
|
domain of f(x)=sqrt(-40-8x)-4
|
domain\:f(x)=\sqrt{-40-8x}-4
|
intercepts of f(x)=x^3+4x^2-4x-16
|
intercepts\:f(x)=x^{3}+4x^{2}-4x-16
|
inverse of 2/5 x-6
|
inverse\:\frac{2}{5}x-6
|
periodicity of f(x)=2csc(x/3)
|
periodicity\:f(x)=2\csc(\frac{x}{3})
|
critical points of 4/(x^2+8)
|
critical\:points\:\frac{4}{x^{2}+8}
|
asymptotes of f(x)=(4x-3)/(-3x-2)
|
asymptotes\:f(x)=\frac{4x-3}{-3x-2}
|
asymptotes of f(x)=(-x)/(x+4)
|
asymptotes\:f(x)=\frac{-x}{x+4}
|
monotone intervals 5^x+3
|
monotone\:intervals\:5^{x}+3
|
inverse of f(x)= 5/(x+1)-3
|
inverse\:f(x)=\frac{5}{x+1}-3
|
domain of g(x)=3x+5
|
domain\:g(x)=3x+5
|
domain of 2/(t^2-16)
|
domain\:\frac{2}{t^{2}-16}
|
extreme points of f(x)=(x+2)^3(x-4)^4
|
extreme\:points\:f(x)=(x+2)^{3}(x-4)^{4}
|
domain of f(x)=-16t^2+120t+18
|
domain\:f(x)=-16t^{2}+120t+18
|
domain of f(x)= x/(x-1)
|
domain\:f(x)=\frac{x}{x-1}
|
line (-11,8)(-3,2)
|
line\:(-11,8)(-3,2)
|
critical points of x^2+2x
|
critical\:points\:x^{2}+2x
|
asymptotes of tan(2x)
|
asymptotes\:\tan(2x)
|
amplitude of cos(2x)
|
amplitude\:\cos(2x)
|
intercepts of f(x)=(x-5)(x+1)(2x+12)
|
intercepts\:f(x)=(x-5)(x+1)(2x+12)
|
asymptotes of f(x)=tan^{-1}((x^2)/(x+3))
|
asymptotes\:f(x)=\tan^{-1}(\frac{x^{2}}{x+3})
|
midpoint (4,-1)(-5,9)
|
midpoint\:(4,-1)(-5,9)
|
domain of x^2-4x+4
|
domain\:x^{2}-4x+4
|