domain of f(x)=\sqrt[5]{x/(7-x^2)}
|
domain\:f(x)=\sqrt[5]{\frac{x}{7-x^{2}}}
|
extreme points of f(x)=(ln^2(x))/x
|
extreme\:points\:f(x)=\frac{\ln^{2}(x)}{x}
|
periodicity of f(x)=cos(2x)
|
periodicity\:f(x)=\cos(2x)
|
asymptotes of f(x)= 1/x+9
|
asymptotes\:f(x)=\frac{1}{x}+9
|
midpoint (-4,-2)(3,3)
|
midpoint\:(-4,-2)(3,3)
|
domain of f(x)=sqrt(t^2+9)
|
domain\:f(x)=\sqrt{t^{2}+9}
|
asymptotes of f(x)=(e^x)/(1-x)
|
asymptotes\:f(x)=\frac{e^{x}}{1-x}
|
inverse of (x^2-16)/(7x^2)
|
inverse\:\frac{x^{2}-16}{7x^{2}}
|
domain of (x^2-1)/(x^2-4)
|
domain\:\frac{x^{2}-1}{x^{2}-4}
|
intercepts of f(x)=-7x-6y=-15-7x-6y=-15
|
intercepts\:f(x)=-7x-6y=-15-7x-6y=-15
|
slope of 5/4
|
slope\:\frac{5}{4}
|
slope intercept of y=-1/4 x+5(5,-9)
|
slope\:intercept\:y=-\frac{1}{4}x+5(5,-9)
|
domain of f(x)=sqrt(-5x+5)
|
domain\:f(x)=\sqrt{-5x+5}
|
line (5,)(8,)
|
line\:(5,)(8,)
|
monotone intervals f(x)=x^3-12x
|
monotone\:intervals\:f(x)=x^{3}-12x
|
intercepts of (x^2-6x+12)/(x-4)
|
intercepts\:\frac{x^{2}-6x+12}{x-4}
|
domain of f(x)=x^2-4x-2
|
domain\:f(x)=x^{2}-4x-2
|
extreme points of f(x)=(x-1)(x-2)(x-4)
|
extreme\:points\:f(x)=(x-1)(x-2)(x-4)
|
domain of f(x)=sqrt((5-x)/x)
|
domain\:f(x)=\sqrt{\frac{5-x}{x}}
|
domain of 9/((x+1)^2-1)
|
domain\:\frac{9}{(x+1)^{2}-1}
|
asymptotes of y=(7x+3)/(x^2+1)
|
asymptotes\:y=\frac{7x+3}{x^{2}+1}
|
range of sqrt(1-x)
|
range\:\sqrt{1-x}
|
domain of f(x)=x^4-16
|
domain\:f(x)=x^{4}-16
|
domain of f(x)=(2-x)/(x+5)
|
domain\:f(x)=\frac{2-x}{x+5}
|
domain of f(x)=sin(x)+cos(x)
|
domain\:f(x)=\sin(x)+\cos(x)
|
inverse of f(x)=(x+8)/(x-4)
|
inverse\:f(x)=\frac{x+8}{x-4}
|
extreme points of f(x)=3x^3-36x-6
|
extreme\:points\:f(x)=3x^{3}-36x-6
|
asymptotes of f(x)=(2x^2+4x)/(x^3-8)
|
asymptotes\:f(x)=\frac{2x^{2}+4x}{x^{3}-8}
|
asymptotes of y=(x^2-5x-6)/(x-6)
|
asymptotes\:y=\frac{x^{2}-5x-6}{x-6}
|
distance (4,-9)(-5,3)
|
distance\:(4,-9)(-5,3)
|
periodicity of-5cos(6x)
|
periodicity\:-5\cos(6x)
|
asymptotes of f(x)= 4/(6-2x)
|
asymptotes\:f(x)=\frac{4}{6-2x}
|
inflection points of \sqrt[3]{x}
|
inflection\:points\:\sqrt[3]{x}
|
range of f(x)= 1/9 x^2-5x+8
|
range\:f(x)=\frac{1}{9}x^{2}-5x+8
|
inverse of f(x)=x+4
|
inverse\:f(x)=x+4
|
sin^2(2x)
|
\sin^{2}(2x)
|
slope intercept of 3x-y=-9
|
slope\:intercept\:3x-y=-9
|
domain of = x/(7-2x)
|
domain\:=\frac{x}{7-2x}
|
domain of f(x)=1-log_{10}(x)
|
domain\:f(x)=1-\log_{10}(x)
|
inverse of f(x)=sqrt(81-x^2)
|
inverse\:f(x)=\sqrt{81-x^{2}}
|
domain of f(x)=\sqrt[4]{(x-2)(x-3)}
|
domain\:f(x)=\sqrt[4]{(x-2)(x-3)}
|
domain of f(x)=(x-4)/(x+5)
|
domain\:f(x)=\frac{x-4}{x+5}
|
domain of (2x)/(x-1)
|
domain\:\frac{2x}{x-1}
|
asymptotes of f(x)=(2*x+3)e^{(5*x)}
|
asymptotes\:f(x)=(2\cdot\:x+3)e^{(5\cdot\:x)}
|
range of 2/((x+1)^3)
|
range\:\frac{2}{(x+1)^{3}}
|
range of e^{x+6}
|
range\:e^{x+6}
|
y=x^2-6x+5
|
y=x^{2}-6x+5
|
range of f(x)=sqrt(x)-4
|
range\:f(x)=\sqrt{x}-4
|
range of 5x-8
|
range\:5x-8
|
inflection points of (x-2)^3(x+1)^2
|
inflection\:points\:(x-2)^{3}(x+1)^{2}
|
domain of f(x)= x/(2x^2+3)
|
domain\:f(x)=\frac{x}{2x^{2}+3}
|
inverse of y=2x+8
|
inverse\:y=2x+8
|
domain of sqrt((-x^2+x-3)/(x^2-4))
|
domain\:\sqrt{\frac{-x^{2}+x-3}{x^{2}-4}}
|
range of x^2-4
|
range\:x^{2}-4
|
symmetry y=x^2+10x+27
|
symmetry\:y=x^{2}+10x+27
|
intercepts of 3/x+5
|
intercepts\:\frac{3}{x}+5
|
perpendicular y=4x+6,\at (4,2)
|
perpendicular\:y=4x+6,\at\:(4,2)
|
domain of f(x)= 1/(2x)
|
domain\:f(x)=\frac{1}{2x}
|
inverse of f(x)=6-5x^2
|
inverse\:f(x)=6-5x^{2}
|
range of-sqrt(x+9)
|
range\:-\sqrt{x+9}
|
slope of y=4x
|
slope\:y=4x
|
range of 6/x+3
|
range\:\frac{6}{x}+3
|
extreme points of f(x)=-x^2+1
|
extreme\:points\:f(x)=-x^{2}+1
|
inflection points of f(x)=xe^{-3x}
|
inflection\:points\:f(x)=xe^{-3x}
|
domain of sqrt(x^2-1)
|
domain\:\sqrt{x^{2}-1}
|
domain of f(x)=x^2-7x+10
|
domain\:f(x)=x^{2}-7x+10
|
inverse of f(x)=4x^3-2
|
inverse\:f(x)=4x^{3}-2
|
range of f(x)=7+(8+x)^{1/2}
|
range\:f(x)=7+(8+x)^{\frac{1}{2}}
|
critical points of xsqrt(4-x^2)
|
critical\:points\:x\sqrt{4-x^{2}}
|
range of y=\sqrt[3]{x+8}
|
range\:y=\sqrt[3]{x+8}
|
extreme points of f(x)=x^3-12x+13
|
extreme\:points\:f(x)=x^{3}-12x+13
|
asymptotes of f(x)=(2x)/(x-2)
|
asymptotes\:f(x)=\frac{2x}{x-2}
|
asymptotes of s^3
|
asymptotes\:s^{3}
|
inverse of f(x)=-3-4/5 x
|
inverse\:f(x)=-3-\frac{4}{5}x
|
domain of y=(x^2+7x-1)/(x-1)
|
domain\:y=\frac{x^{2}+7x-1}{x-1}
|
domain of 12x+1
|
domain\:12x+1
|
domain of f(x)=log_{2}(2-|3-x|)
|
domain\:f(x)=\log_{2}(2-|3-x|)
|
domain of f(r)=sqrt(4-r)
|
domain\:f(r)=\sqrt{4-r}
|
domain of f(x)=(x-1)/(x+4)
|
domain\:f(x)=\frac{x-1}{x+4}
|
extreme points of f(x)=(t^2-36)^{1/3}
|
extreme\:points\:f(x)=(t^{2}-36)^{\frac{1}{3}}
|
domain of (5x-2)/(7x+3)
|
domain\:\frac{5x-2}{7x+3}
|
domain of 4cos(x)sin(x)-4sin(x)
|
domain\:4\cos(x)\sin(x)-4\sin(x)
|
slope of m=-7,(-2,-5)
|
slope\:m=-7,(-2,-5)
|
range of f(x)=2x^2-4
|
range\:f(x)=2x^{2}-4
|
domain of f(x)=-4x-3
|
domain\:f(x)=-4x-3
|
range of sqrt(x+1)
|
range\:\sqrt{x+1}
|
inverse of f(x)=10-2x^3
|
inverse\:f(x)=10-2x^{3}
|
inverse of f(x)=y=(x-2)^2-4
|
inverse\:f(x)=y=(x-2)^{2}-4
|
inverse of f(x)= 1/(4x+3)
|
inverse\:f(x)=\frac{1}{4x+3}
|
extreme points of f(x)=((3+9ln(x)))/x
|
extreme\:points\:f(x)=\frac{(3+9\ln(x))}{x}
|
asymptotes of 7/((x-4)^3)
|
asymptotes\:\frac{7}{(x-4)^{3}}
|
range of 1/(3x)
|
range\:\frac{1}{3x}
|
domain of sqrt(x)+3
|
domain\:\sqrt{x}+3
|
extreme points of f(x)=4x^3-48x-5
|
extreme\:points\:f(x)=4x^{3}-48x-5
|
domain of f(x)=x^3+2x^2-x+4
|
domain\:f(x)=x^{3}+2x^{2}-x+4
|
domain of f(x)= 1/(xsqrt(x^2+2))
|
domain\:f(x)=\frac{1}{x\sqrt{x^{2}+2}}
|
range of |x-2|
|
range\:|x-2|
|
domain of f(x)=x^3+5
|
domain\:f(x)=x^{3}+5
|
shift y=5cos(2x+(pi)/2)
|
shift\:y=5\cos(2x+\frac{\pi}{2})
|
line (0,-2),(2,6)
|
line\:(0,-2),(2,6)
|