slope intercept of (5,-4)\land y=74x-3
|
slope\:intercept\:(5,-4)\land\:y=74x-3
|
slope intercept of 2x-3y=-2
|
slope\:intercept\:2x-3y=-2
|
asymptotes of f(x)= 2/(x-1)+3
|
asymptotes\:f(x)=\frac{2}{x-1}+3
|
slope of y= 24/6 x+24
|
slope\:y=\frac{24}{6}x+24
|
domain of sqrt(25-x^2)+sqrt(x+1)
|
domain\:\sqrt{25-x^{2}}+\sqrt{x+1}
|
asymptotes of f(x)=(4x+3)/(2x-5)
|
asymptotes\:f(x)=\frac{4x+3}{2x-5}
|
intercepts of cos(2x+5)
|
intercepts\:\cos(2x+5)
|
domain of f(x)=3^{x-4}
|
domain\:f(x)=3^{x-4}
|
slope intercept of 4x+6y=-30
|
slope\:intercept\:4x+6y=-30
|
5x^2
|
5x^{2}
|
extreme points of f(x)=(x^2-4)^{2/3}
|
extreme\:points\:f(x)=(x^{2}-4)^{\frac{2}{3}}
|
perpendicular y=-2x
|
perpendicular\:y=-2x
|
inverse of f(x)= 9/(x+4)
|
inverse\:f(x)=\frac{9}{x+4}
|
shift f(x)= 2/5 cos(x/3)
|
shift\:f(x)=\frac{2}{5}\cos(\frac{x}{3})
|
symmetry-1/2 (x+4)^2+6
|
symmetry\:-\frac{1}{2}(x+4)^{2}+6
|
asymptotes of f(x)=-1/2*2^{x+5}+8
|
asymptotes\:f(x)=-\frac{1}{2}\cdot\:2^{x+5}+8
|
midpoint (-8,-10)(0,0)
|
midpoint\:(-8,-10)(0,0)
|
parity f(x)=2x-1
|
parity\:f(x)=2x-1
|
inverse of f(x)= x/(x+9)
|
inverse\:f(x)=\frac{x}{x+9}
|
slope of m=3
|
slope\:m=3
|
domain of (sqrt(x)+5)^2
|
domain\:(\sqrt{x}+5)^{2}
|
periodicity of f(x)= 9/2 cos((pi x)/4)
|
periodicity\:f(x)=\frac{9}{2}\cos(\frac{\pi\:x}{4})
|
asymptotes of f(x)= x/(sqrt(4x^2+1))
|
asymptotes\:f(x)=\frac{x}{\sqrt{4x^{2}+1}}
|
domain of f(x)=sqrt(9x-2)
|
domain\:f(x)=\sqrt{9x-2}
|
critical points of f(x)=-8x^3+24x+7
|
critical\:points\:f(x)=-8x^{3}+24x+7
|
inverse of f(x)=\sqrt[5]{2(x^3+3)}
|
inverse\:f(x)=\sqrt[5]{2(x^{3}+3)}
|
parity f(x)= 1/x
|
parity\:f(x)=\frac{1}{x}
|
inverse of f(x)=-3+sqrt(9-x^2)
|
inverse\:f(x)=-3+\sqrt{9-x^{2}}
|
monotone intervals f(x)=x^3-4x^2+x+6
|
monotone\:intervals\:f(x)=x^{3}-4x^{2}+x+6
|
domain of f(x)= 1/(x^2+8)
|
domain\:f(x)=\frac{1}{x^{2}+8}
|
extreme points of f(x)=4x^2-24x-30
|
extreme\:points\:f(x)=4x^{2}-24x-30
|
range of f(x)=-3y+7x=-3
|
range\:f(x)=-3y+7x=-3
|
asymptotes of f(x)=(-5x^2+6x-2)/(x^2+3)
|
asymptotes\:f(x)=\frac{-5x^{2}+6x-2}{x^{2}+3}
|
slope of 9x+y=0
|
slope\:9x+y=0
|
intercepts of f(x)=5x-3y=15
|
intercepts\:f(x)=5x-3y=15
|
inverse of-10
|
inverse\:-10
|
critical points of-9+8x-x^3
|
critical\:points\:-9+8x-x^{3}
|
asymptotes of 7/(x-5)
|
asymptotes\:\frac{7}{x-5}
|
range of f(x)=(x^2-6x+12)/(x-4)
|
range\:f(x)=\frac{x^{2}-6x+12}{x-4}
|
midpoint (-1,-10)(7,3)
|
midpoint\:(-1,-10)(7,3)
|
inverse of f(x)=(x-4)^2+4
|
inverse\:f(x)=(x-4)^{2}+4
|
asymptotes of 6/(x^2-5x-6)
|
asymptotes\:\frac{6}{x^{2}-5x-6}
|
inverse of 9b^2+11b+4
|
inverse\:9b^{2}+11b+4
|
periodicity of cos(x)
|
periodicity\:\cos(x)
|
inverse of g(x)=(x+8)/3
|
inverse\:g(x)=\frac{x+8}{3}
|
midpoint (2,10)(1,40)
|
midpoint\:(2,10)(1,40)
|
range of f(x)=x^2-4
|
range\:f(x)=x^{2}-4
|
domain of f(x)=(x^3+5x^2+17)/(x^2-16)
|
domain\:f(x)=\frac{x^{3}+5x^{2}+17}{x^{2}-16}
|
slope intercept of 6x+y=-1
|
slope\:intercept\:6x+y=-1
|
inflection points of (x^2)/(x^2-4)
|
inflection\:points\:\frac{x^{2}}{x^{2}-4}
|
inverse of f(x)=ln(9t)
|
inverse\:f(x)=\ln(9t)
|
domain of f(x)=sqrt(t^2+1)
|
domain\:f(x)=\sqrt{t^{2}+1}
|
asymptotes of f(x)=2x^2-32
|
asymptotes\:f(x)=2x^{2}-32
|
domain of f(x)=\sqrt[3]{x}+1
|
domain\:f(x)=\sqrt[3]{x}+1
|
intercepts of f(x)=x^3-4x^2-4x+16
|
intercepts\:f(x)=x^{3}-4x^{2}-4x+16
|
extreme points of f(x)=3x^2-16x+5
|
extreme\:points\:f(x)=3x^{2}-16x+5
|
inverse of f(x)= 1/((x+1)^2)
|
inverse\:f(x)=\frac{1}{(x+1)^{2}}
|
intercepts of 4(2/3)^x+1
|
intercepts\:4(\frac{2}{3})^{x}+1
|
domain of (x^2+4x+6)/(3x^2+12x+12)
|
domain\:\frac{x^{2}+4x+6}{3x^{2}+12x+12}
|
range of sqrt(7-2x)+2
|
range\:\sqrt{7-2x}+2
|
inverse of 2x^2+2x-1
|
inverse\:2x^{2}+2x-1
|
intercepts of f(x)=2x+y=16x-4y=19
|
intercepts\:f(x)=2x+y=16x-4y=19
|
symmetry y=x^2+4x-5
|
symmetry\:y=x^{2}+4x-5
|
inverse of f(x)=9-4x^2
|
inverse\:f(x)=9-4x^{2}
|
inverse of f(x)=4ln(x)+8
|
inverse\:f(x)=4\ln(x)+8
|
domain of f(x)=(x+1)/(x^2-1)
|
domain\:f(x)=\frac{x+1}{x^{2}-1}
|
range of (-4-5x)/(3x-1)
|
range\:\frac{-4-5x}{3x-1}
|
extreme points of f(x)= 1/2 x^2
|
extreme\:points\:f(x)=\frac{1}{2}x^{2}
|
range of f(x)=sqrt(2x-1)+3
|
range\:f(x)=\sqrt{2x-1}+3
|
critical points of f(x)=ax^2
|
critical\:points\:f(x)=ax^{2}
|
shift f(x)=sin(2(x+pi))
|
shift\:f(x)=\sin(2(x+\pi))
|
domain of f(x)=(5x)/(x^2-16)
|
domain\:f(x)=\frac{5x}{x^{2}-16}
|
amplitude of 5cos(6x+(pi)/2)
|
amplitude\:5\cos(6x+\frac{\pi}{2})
|
domain of sqrt(3-2x)
|
domain\:\sqrt{3-2x}
|
extreme points of f(x)=x^3-9x^2+15x
|
extreme\:points\:f(x)=x^{3}-9x^{2}+15x
|
asymptotes of y=(x^2-3x-4)/(1-3x-4x^2)
|
asymptotes\:y=\frac{x^{2}-3x-4}{1-3x-4x^{2}}
|
domain of (20)/(10+e^x)
|
domain\:\frac{20}{10+e^{x}}
|
slope intercept of 3x+2y=10
|
slope\:intercept\:3x+2y=10
|
domain of sqrt(x^2-121)
|
domain\:\sqrt{x^{2}-121}
|
range of x/(x^2-16)
|
range\:\frac{x}{x^{2}-16}
|
domain of y=sqrt(6-x-4x^2-x^3)
|
domain\:y=\sqrt{6-x-4x^{2}-x^{3}}
|
|x-2|
|
\left|x-2\right|
|
range of f(x)=(3x^2+2x-1)/(6x^2-7x-3)
|
range\:f(x)=\frac{3x^{2}+2x-1}{6x^{2}-7x-3}
|
inverse of f(x)=2x^3-113
|
inverse\:f(x)=2x^{3}-113
|
vertex f(x)=y=2x^2-12x-2
|
vertex\:f(x)=y=2x^{2}-12x-2
|
asymptotes of f(x)=(x^2-2x)/(2x^2+2x)
|
asymptotes\:f(x)=\frac{x^{2}-2x}{2x^{2}+2x}
|
inverse of f(x)=7x^3+3
|
inverse\:f(x)=7x^{3}+3
|
domain of (x^4)/(x^2+x-6)
|
domain\:\frac{x^{4}}{x^{2}+x-6}
|
parity f(x)=sqrt(5x)
|
parity\:f(x)=\sqrt{5x}
|
domain of f(x)=((x-2)^2)/((x-2))
|
domain\:f(x)=\frac{(x-2)^{2}}{(x-2)}
|
domain of f(x)=(x-7)/(5x^2)
|
domain\:f(x)=\frac{x-7}{5x^{2}}
|
domain of-1/(2sqrt(4-x))
|
domain\:-\frac{1}{2\sqrt{4-x}}
|
parity f(x)=x^2+2x
|
parity\:f(x)=x^{2}+2x
|
inflection points of cot(x)
|
inflection\:points\:\cot(x)
|
domain of y= 1/2
|
domain\:y=\frac{1}{2}
|
extreme points of x^3-9x^2+15x
|
extreme\:points\:x^{3}-9x^{2}+15x
|
inflection points of (-5x+25)/9
|
inflection\:points\:\frac{-5x+25}{9}
|
inverse of 2x^2-7
|
inverse\:2x^{2}-7
|
asymptotes of (5x+25)/(-x^2+25)
|
asymptotes\:\frac{5x+25}{-x^{2}+25}
|
parity arctan(x)
|
parity\:\arctan(x)
|