shift 3cos(2x+(pi)/2)
|
shift\:3\cos(2x+\frac{\pi}{2})
|
frequency f(x)=3cos(pi x)-2
|
frequency\:f(x)=3\cos(\pi\:x)-2
|
range of-x^2-8x+9
|
range\:-x^{2}-8x+9
|
domain of f(x)=ln(((2-x))/x)
|
domain\:f(x)=\ln(\frac{(2-x)}{x})
|
domain of ([sqrt(2-x)])/([sqrt(x^2-1)])
|
domain\:\frac{[\sqrt{2-x}]}{[\sqrt{x^{2}-1}]}
|
domain of f(x)=(sqrt(x-8))/(x(x-9))
|
domain\:f(x)=\frac{\sqrt{x-8}}{x(x-9)}
|
perpendicular 3y+6x=9
|
perpendicular\:3y+6x=9
|
symmetry 1(x+4)^2-2
|
symmetry\:1(x+4)^{2}-2
|
symmetry y=x^2+48/5
|
symmetry\:y=x^{2}+\frac{48}{5}
|
inverse of 1/(x^3-1)
|
inverse\:\frac{1}{x^{3}-1}
|
inverse of y=4-2x
|
inverse\:y=4-2x
|
asymptotes of (x^2-2x-24)/(x^2+2x-8)
|
asymptotes\:\frac{x^{2}-2x-24}{x^{2}+2x-8}
|
domain of f(x)=(-2)/(x+4)
|
domain\:f(x)=\frac{-2}{x+4}
|
domain of f(x)=sqrt(5+8x)
|
domain\:f(x)=\sqrt{5+8x}
|
inverse of f(x)= 2/(x+1)
|
inverse\:f(x)=\frac{2}{x+1}
|
range of 2x+3
|
range\:2x+3
|
asymptotes of f(x)=(-2x-8)/(5x+20)
|
asymptotes\:f(x)=\frac{-2x-8}{5x+20}
|
distance (-5,-3)(9,8)
|
distance\:(-5,-3)(9,8)
|
slope of y= 1/4 x+1
|
slope\:y=\frac{1}{4}x+1
|
range of y=-x^2+4x-1
|
range\:y=-x^{2}+4x-1
|
inverse of 4-3/2 x
|
inverse\:4-\frac{3}{2}x
|
inverse of f(x)=4x^5+2
|
inverse\:f(x)=4x^{5}+2
|
line (5,-2)(5,0)
|
line\:(5,-2)(5,0)
|
inverse of f(x)=9+(10+x)^{1/2}
|
inverse\:f(x)=9+(10+x)^{\frac{1}{2}}
|
range of 3x-6
|
range\:3x-6
|
domain of arctan(t+1)
|
domain\:\arctan(t+1)
|
domain of ((x^2-9))/(x-3)
|
domain\:\frac{(x^{2}-9)}{x-3}
|
intercepts of f(x)=3[x-2]-4
|
intercepts\:f(x)=3[x-2]-4
|
domain of f(x)=-1/(2sqrt(9-x))
|
domain\:f(x)=-\frac{1}{2\sqrt{9-x}}
|
inverse of f(x)= 2/5 x+4
|
inverse\:f(x)=\frac{2}{5}x+4
|
domain of (sqrt(6-x))
|
domain\:(\sqrt{6-x})
|
inverse of f(x)=3x^3-12
|
inverse\:f(x)=3x^{3}-12
|
inverse of f(x)=-3-2x
|
inverse\:f(x)=-3-2x
|
periodicity of f(x)=2cos(pi x)
|
periodicity\:f(x)=2\cos(\pi\:x)
|
inverse of 3\sqrt[3]{x}
|
inverse\:3\sqrt[3]{x}
|
inverse of f(1)=-3x+3+sqrt(18x-18)
|
inverse\:f(1)=-3x+3+\sqrt{18x-18}
|
range of f(x)=(x+2)/(x-3)
|
range\:f(x)=\frac{x+2}{x-3}
|
domain of f(x)=10+3/(2x-1)
|
domain\:f(x)=10+\frac{3}{2x-1}
|
domain of f(x)= 2/(sqrt(x+11)-1)
|
domain\:f(x)=\frac{2}{\sqrt{x+11}-1}
|
intercepts of f(x)=(5x+3)/(x-2)
|
intercepts\:f(x)=\frac{5x+3}{x-2}
|
range of 4sec(1/6 x)-1
|
range\:4\sec(\frac{1}{6}x)-1
|
range of-0.5(x+3)^2+4
|
range\:-0.5(x+3)^{2}+4
|
perpendicular x+y=6,\at (-1,-1)
|
perpendicular\:x+y=6,\at\:(-1,-1)
|
intercepts of x^3-3x^2+4x+8
|
intercepts\:x^{3}-3x^{2}+4x+8
|
critical points of 7x^2
|
critical\:points\:7x^{2}
|
asymptotes of f(x)=(x^2+2)/(x^2+4)
|
asymptotes\:f(x)=\frac{x^{2}+2}{x^{2}+4}
|
range of (6x)/(7x-1)
|
range\:\frac{6x}{7x-1}
|
intercepts of f(x)=ln(((x+1))/(x^2-25))
|
intercepts\:f(x)=\ln(\frac{(x+1)}{x^{2}-25})
|
slope of x-y/3 =4
|
slope\:x-\frac{y}{3}=4
|
sqrt(x-4)
|
\sqrt{x-4}
|
asymptotes of f(x)= 3/(x+2)+2
|
asymptotes\:f(x)=\frac{3}{x+2}+2
|
midpoint (-5,1)(4,-5)
|
midpoint\:(-5,1)(4,-5)
|
extreme points of f(x)=-6x^2-2x^3
|
extreme\:points\:f(x)=-6x^{2}-2x^{3}
|
intercepts of f(x)=((x-2)^2)/(x-1)
|
intercepts\:f(x)=\frac{(x-2)^{2}}{x-1}
|
parity sqrt(x+2)
|
parity\:\sqrt{x+2}
|
domain of f(x)=(x-4)/3
|
domain\:f(x)=\frac{x-4}{3}
|
domain of f(x)=sqrt(x)-7
|
domain\:f(x)=\sqrt{x}-7
|
range of 9
|
range\:9
|
domain of f(x)=(ln(x))/(x-2)
|
domain\:f(x)=\frac{\ln(x)}{x-2}
|
inverse of f(x)=y+1
|
inverse\:f(x)=y+1
|
domain of sqrt(4x-32)
|
domain\:\sqrt{4x-32}
|
extreme points of f(x)=-3x^4+12x^2-9
|
extreme\:points\:f(x)=-3x^{4}+12x^{2}-9
|
midpoint (-3,-5)(-5,1)
|
midpoint\:(-3,-5)(-5,1)
|
inverse of f(x)= 4/5 x-4
|
inverse\:f(x)=\frac{4}{5}x-4
|
range of f(x)=4^x-3
|
range\:f(x)=4^{x}-3
|
domain of 4x^2+1
|
domain\:4x^{2}+1
|
4x
|
4x
|
inverse of x^2+3x
|
inverse\:x^{2}+3x
|
slope of y= 5/3 x-3
|
slope\:y=\frac{5}{3}x-3
|
parity f(x)=-x^2+8x^6+x^4
|
parity\:f(x)=-x^{2}+8x^{6}+x^{4}
|
extreme points of f(x)= 1/3 x^3-3x
|
extreme\:points\:f(x)=\frac{1}{3}x^{3}-3x
|
domain of f(x)=sqrt(5x+1)
|
domain\:f(x)=\sqrt{5x+1}
|
intercepts of f(x)=\sqrt[3]{x^2}-1
|
intercepts\:f(x)=\sqrt[3]{x^{2}}-1
|
domain of f(x)=(x+2)/(x^2)
|
domain\:f(x)=\frac{x+2}{x^{2}}
|
domain of f(x)=(sqrt(x^2-4))/(x-3)
|
domain\:f(x)=\frac{\sqrt{x^{2}-4}}{x-3}
|
inverse of f(x)=(x+1)/(x-3)
|
inverse\:f(x)=\frac{x+1}{x-3}
|
range of-(x-1)^3+2
|
range\:-(x-1)^{3}+2
|
perpendicular y=-5x+3
|
perpendicular\:y=-5x+3
|
range of f(x)=(2x+2)/(sqrt(x-1))
|
range\:f(x)=\frac{2x+2}{\sqrt{x-1}}
|
extreme points of f(x)=9cos(x)[0,2pi]
|
extreme\:points\:f(x)=9\cos(x)[0,2\pi]
|
extreme points of x^2ln(x)
|
extreme\:points\:x^{2}\ln(x)
|
asymptotes of f(x)=(2x^2-5x+8)/(x-3)
|
asymptotes\:f(x)=\frac{2x^{2}-5x+8}{x-3}
|
inverse of f(x)=sqrt(1+x^4)
|
inverse\:f(x)=\sqrt{1+x^{4}}
|
slope of-5/4
|
slope\:-\frac{5}{4}
|
amplitude of tan(2theta-(11pi)/6)-1
|
amplitude\:\tan(2\theta-\frac{11\pi}{6})-1
|
range of sqrt(4x-3)
|
range\:\sqrt{4x-3}
|
perpendicular 3y-6=12
|
perpendicular\:3y-6=12
|
intercepts of f(x)=x^3-x^2
|
intercepts\:f(x)=x^{3}-x^{2}
|
range of x^2+3x+1
|
range\:x^{2}+3x+1
|
intercepts of (x^2-9x)/(x+3)
|
intercepts\:\frac{x^{2}-9x}{x+3}
|
extreme points of f(x)=-8x^3+24x+7
|
extreme\:points\:f(x)=-8x^{3}+24x+7
|
inverse of f(x)=sqrt(x^2+8x)
|
inverse\:f(x)=\sqrt{x^{2}+8x}
|
inverse of f(x)=5(x+4)^2-1
|
inverse\:f(x)=5(x+4)^{2}-1
|
slope of y=7-4x
|
slope\:y=7-4x
|
inverse of f(x)=(x^2-2x-3)/(x+1)
|
inverse\:f(x)=\frac{x^{2}-2x-3}{x+1}
|
inverse of f(x)=4sqrt(2x-3)
|
inverse\:f(x)=4\sqrt{2x-3}
|
extreme points of f(x)=(x^2)/2-x-9/2
|
extreme\:points\:f(x)=\frac{x^{2}}{2}-x-\frac{9}{2}
|
domain of f(x)=-2(0.5)^x
|
domain\:f(x)=-2(0.5)^{x}
|
inverse of f(x)=100\div 1.578
|
inverse\:f(x)=100\div\:1.578
|
distance (1/4 ,5)(7, 2/3)
|
distance\:(\frac{1}{4},5)(7,\frac{2}{3})
|