extreme f(x)=x^{6/7},-2<= x<= 4
|
extreme\:f(x)=x^{\frac{6}{7}},-2\le\:x\le\:4
|
f(x,y)= 1/(e^{x-y)}
|
f(x,y)=\frac{1}{e^{x-y}}
|
f(x,y)=(x^3)/3-3y^2-(x^2)/2+3xy
|
f(x,y)=\frac{x^{3}}{3}-3y^{2}-\frac{x^{2}}{2}+3xy
|
y=((x+3)(x^2-2r))/(x^3)
|
y=\frac{(x+3)(x^{2}-2r)}{x^{3}}
|
extreme 14x^2+(3500)/x
|
extreme\:14x^{2}+\frac{3500}{x}
|
symmetry y=x^2-2x-8
|
symmetry\:y=x^{2}-2x-8
|
f(x,y)=x^3+y^3-12x-3y+15
|
f(x,y)=x^{3}+y^{3}-12x-3y+15
|
extreme f(x)=x^3+15^2
|
extreme\:f(x)=x^{3}+15^{2}
|
extreme f(x)=x^{(2)}+xy+y^{(2)}-6x-6y+5
|
extreme\:f(x)=x^{(2)}+xy+y^{(2)}-6x-6y+5
|
extreme f(x)=x^4-30x^2+29
|
extreme\:f(x)=x^{4}-30x^{2}+29
|
f(x,y)=e^{8x}-xy^3
|
f(x,y)=e^{8x}-xy^{3}
|
f(xy)=ln(4-x-y)
|
f(xy)=\ln(4-x-y)
|
extreme f(x)=x^4-6x^2+4
|
extreme\:f(x)=x^{4}-6x^{2}+4
|
extreme f(x,y)=3x+y
|
extreme\:f(x,y)=3x+y
|
extreme f(x,y)=6-x^4+2x^2-y^2
|
extreme\:f(x,y)=6-x^{4}+2x^{2}-y^{2}
|
minimum 4x^3+6x+2
|
minimum\:4x^{3}+6x+2
|
inverse of 3x-x^2
|
inverse\:3x-x^{2}
|
extreme f(x)=5x^2+1,-1<= x<= 2
|
extreme\:f(x)=5x^{2}+1,-1\le\:x\le\:2
|
extreme f(x)=-3x^2y-84xy+7y^2
|
extreme\:f(x)=-3x^{2}y-84xy+7y^{2}
|
f(x,y)=-(x^2-1)^2-(x^2y-x-1)^2
|
f(x,y)=-(x^{2}-1)^{2}-(x^{2}y-x-1)^{2}
|
extreme 0.5x^2+15x+5000
|
extreme\:0.5x^{2}+15x+5000
|
extreme f(x)=x^3-x-1
|
extreme\:f(x)=x^{3}-x-1
|
extreme f(x)=(2x^2+6)/(x-1)
|
extreme\:f(x)=\frac{2x^{2}+6}{x-1}
|
extreme f(x)=x^5+32
|
extreme\:f(x)=x^{5}+32
|
extreme f(x)=(x+1)^2(x-1/2)(x-2)
|
extreme\:f(x)=(x+1)^{2}(x-\frac{1}{2})(x-2)
|
P(x,y)=xy
|
P(x,y)=xy
|
inverse of \sqrt[3]{x-2}
|
inverse\:\sqrt[3]{x-2}
|
extreme x-2sin(x)(0.2pi)
|
extreme\:x-2\sin(x)(0.2π)
|
f(x,y)=(x+y)^{-1}
|
f(x,y)=(x+y)^{-1}
|
minimum f(x)=x^2-18x
|
minimum\:f(x)=x^{2}-18x
|
f(x,y)=sqrt(400-49x^2-16y^2)
|
f(x,y)=\sqrt{400-49x^{2}-16y^{2}}
|
extreme f(x)=(3x)/(x^2+1),-4<= x<= 4
|
extreme\:f(x)=\frac{3x}{x^{2}+1},-4\le\:x\le\:4
|
extreme f(x)=x^3+y^3-3x^2-6y^2-9x
|
extreme\:f(x)=x^{3}+y^{3}-3x^{2}-6y^{2}-9x
|
extreme 2x^3-x^2-4x+12
|
extreme\:2x^{3}-x^{2}-4x+12
|
minimum f(x)=x^4-8x^2+3
|
minimum\:f(x)=x^{4}-8x^{2}+3
|
parity f(x)=x^5+2x
|
parity\:f(x)=x^{5}+2x
|
extreme f(x)=x^3-3/2 x^2-6x+1
|
extreme\:f(x)=x^{3}-\frac{3}{2}x^{2}-6x+1
|
extreme f(x)=4x^2+4y^2-xy
|
extreme\:f(x)=4x^{2}+4y^{2}-xy
|
extreme f(x)=600+35x
|
extreme\:f(x)=600+35x
|
extreme f(x)=3cos(pix),0<= x<= 1/6
|
extreme\:f(x)=3\cos(πx),0\le\:x\le\:\frac{1}{6}
|
extreme f(x)=x^4-4x^2+2
|
extreme\:f(x)=x^{4}-4x^{2}+2
|
extreme f(x)= 1/2 x^{2/3}-x^{1/3}+3
|
extreme\:f(x)=\frac{1}{2}x^{\frac{2}{3}}-x^{\frac{1}{3}}+3
|
extreme f(x)=ln(3x+1)
|
extreme\:f(x)=\ln(3x+1)
|
extreme f(x)=-2+5sin(pi/(12)(x-2))
|
extreme\:f(x)=-2+5\sin(\frac{π}{12}(x-2))
|
f(x)=(2x-x^2)(2y-y^2)
|
f(x)=(2x-x^{2})(2y-y^{2})
|
midpoint (8,-7)(9,8)
|
midpoint\:(8,-7)(9,8)
|
extreme f(x,y)=9-2x+8y-x^2-4y^2
|
extreme\:f(x,y)=9-2x+8y-x^{2}-4y^{2}
|
extreme f(x)=-4x^5ln(2x)
|
extreme\:f(x)=-4x^{5}\ln(2x)
|
extreme f(x)=(x^3)/x-3x^2-7x
|
extreme\:f(x)=\frac{x^{3}}{x}-3x^{2}-7x
|
extreme y=x^3+3x^2+3x+1
|
extreme\:y=x^{3}+3x^{2}+3x+1
|
minimum f(x)=2+9x+3x^2-x^3
|
minimum\:f(x)=2+9x+3x^{2}-x^{3}
|
extreme f(x)=(8x-3)/x
|
extreme\:f(x)=\frac{8x-3}{x}
|
extreme 1+7/x-5/(x^2)
|
extreme\:1+\frac{7}{x}-\frac{5}{x^{2}}
|
extreme f(x)=4+(4+3x)^{2/3}
|
extreme\:f(x)=4+(4+3x)^{\frac{2}{3}}
|
extreme f(x)=6x+6/x
|
extreme\:f(x)=6x+\frac{6}{x}
|
domain of f(x)=-9x+4
|
domain\:f(x)=-9x+4
|
parity ((x-3))/(-4x^3+4x^2-5)
|
parity\:\frac{(x-3)}{-4x^{3}+4x^{2}-5}
|
f(x,y)=x^2-3xy-y^2
|
f(x,y)=x^{2}-3xy-y^{2}
|
p(x)=12x^4-27x^3+ax^2+27x-6
|
p(x)=12x^{4}-27x^{3}+ax^{2}+27x-6
|
extreme f(x,y)=x^3-3x+y^2+6y+8
|
extreme\:f(x,y)=x^{3}-3x+y^{2}+6y+8
|
extreme f(x,y)=8+76xy+38x^2+240y+(y^4)/4
|
extreme\:f(x,y)=8+76xy+38x^{2}+240y+\frac{y^{4}}{4}
|
extreme y=(x^2)/(ln(x))
|
extreme\:y=\frac{x^{2}}{\ln(x)}
|
extreme f(x)=x^3-6x^2+9+9,-1<= x<= 9
|
extreme\:f(x)=x^{3}-6x^{2}+9+9,-1\le\:x\le\:9
|
f(x,y)=sqrt(16-x^2-16y^2)
|
f(x,y)=\sqrt{16-x^{2}-16y^{2}}
|
extreme f(x)=x^3+y^3+9x^2-3y^2-8
|
extreme\:f(x)=x^{3}+y^{3}+9x^{2}-3y^{2}-8
|
f(x,y)=6x-x^2+2y^4-16y^2+5
|
f(x,y)=6x-x^{2}+2y^{4}-16y^{2}+5
|
extreme f(x)=x^{2/3}(20-x)
|
extreme\:f(x)=x^{\frac{2}{3}}(20-x)
|
monotone intervals f(x)=-x^3-7
|
monotone\:intervals\:f(x)=-x^{3}-7
|
u(x,y)=(x-4)(78-6x-3y)+(y-6)(66-3x-6y)
|
u(x,y)=(x-4)(78-6x-3y)+(y-6)(66-3x-6y)
|
y=x^2+6z+z^2
|
y=x^{2}+6z+z^{2}
|
extreme f(x)=(x-1)^2(x-3)
|
extreme\:f(x)=(x-1)^{2}(x-3)
|
f(x)=5x^2y-3xy^2-4x+3y
|
f(x)=5x^{2}y-3xy^{2}-4x+3y
|
extreme f(x)=tan(x)[-5,6]
|
extreme\:f(x)=\tan(x)[-5,6]
|
extreme-x^3+x^2+x+8
|
extreme\:-x^{3}+x^{2}+x+8
|
extreme x^3+y^2+12xy+1
|
extreme\:x^{3}+y^{2}+12xy+1
|
extreme f(x)=200x-(0.003x^2+80x+500000)
|
extreme\:f(x)=200x-(0.003x^{2}+80x+500000)
|
minimum-(40/3)/(x^2)+0.54x
|
minimum\:-\frac{\frac{40}{3}}{x^{2}}+0.54x
|
f(x,y)=x*e^y
|
f(x,y)=x\cdot\:e^{y}
|
parity f(x)=\sqrt[3]{7x^2}
|
parity\:f(x)=\sqrt[3]{7x^{2}}
|
extreme f(x)=4θ-6sin(θ)
|
extreme\:f(x)=4θ-6\sin(θ)
|
extreme f(x,y)=x^2+y^2-2x+y
|
extreme\:f(x,y)=x^{2}+y^{2}-2x+y
|
extreme f(x)=2x^3+9x^2-24x-10
|
extreme\:f(x)=2x^{3}+9x^{2}-24x-10
|
extreme f(x)=x^2+3x-2
|
extreme\:f(x)=x^{2}+3x-2
|
extreme f(x)=x^2+3x-9
|
extreme\:f(x)=x^{2}+3x-9
|
extreme f(x)=(25x^2+81)/x
|
extreme\:f(x)=\frac{25x^{2}+81}{x}
|
K(y,z)=4yz
|
K(y,z)=4yz
|
extreme f(x)=5x^3e^{-0.9x},-1<= x<= 5
|
extreme\:f(x)=5x^{3}e^{-0.9x},-1\le\:x\le\:5
|
extreme f(x)=x^4-98x^2+11,-6<= x<= 15
|
extreme\:f(x)=x^{4}-98x^{2}+11,-6\le\:x\le\:15
|
extreme f(x)=-2x^2+8x+13
|
extreme\:f(x)=-2x^{2}+8x+13
|
extreme f(x)=x^3-27x^2+216x
|
extreme\:f(x)=x^{3}-27x^{2}+216x
|
extreme f(x)=(9x^2-1)(1+4y)
|
extreme\:f(x)=(9x^{2}-1)(1+4y)
|
extreme f(x)=2x^3+6x-9
|
extreme\:f(x)=2x^{3}+6x-9
|
minimum 1/3 pir^2h
|
minimum\:\frac{1}{3}πr^{2}h
|
extreme f(x)=-2x^2+2x+4
|
extreme\:f(x)=-2x^{2}+2x+4
|
f(x,y)=y^3-3xy
|
f(x,y)=y^{3}-3xy
|
minimum f(x)=x^4-4x^3+16x-16
|
minimum\:f(x)=x^{4}-4x^{3}+16x-16
|
minimum f(x)=x^3-3x
|
minimum\:f(x)=x^{3}-3x
|
inverse of f(x)=(19)/(x^3)
|
inverse\:f(x)=\frac{19}{x^{3}}
|
f(x,y)=10x^2-4xy+25y^2
|
f(x,y)=10x^{2}-4xy+25y^{2}
|
extreme f(x)=(-3x^2y+9xy^2-12xy)/(xy)
|
extreme\:f(x)=\frac{-3x^{2}y+9xy^{2}-12xy}{xy}
|