extreme f(x)=-3+8x-x^3
|
extreme\:f(x)=-3+8x-x^{3}
|
extreme f(x)=(x+1)/(x^2-2x-3)
|
extreme\:f(x)=\frac{x+1}{x^{2}-2x-3}
|
extreme f(x,y)=7x^2-10y^2
|
extreme\:f(x,y)=7x^{2}-10y^{2}
|
extreme y=(3x)/(x^2-1)
|
extreme\:y=\frac{3x}{x^{2}-1}
|
extreme x^3+6x^2+12x+7
|
extreme\:x^{3}+6x^{2}+12x+7
|
extreme e^{-x^2}-2x^2e^{-x^2}
|
extreme\:e^{-x^{2}}-2x^{2}e^{-x^{2}}
|
f(x,y)=6x-x^2-2y-y^2+5
|
f(x,y)=6x-x^{2}-2y-y^{2}+5
|
extreme f(x)=5-x^4+2x^2-y^2
|
extreme\:f(x)=5-x^{4}+2x^{2}-y^{2}
|
slope of 2y=3x+12
|
slope\:2y=3x+12
|
extreme f(x)=x+sqrt(7-x)
|
extreme\:f(x)=x+\sqrt{7-x}
|
extreme f(x)=x^3+2x^2-3x
|
extreme\:f(x)=x^{3}+2x^{2}-3x
|
extreme-5x^3+2x^2-x+20
|
extreme\:-5x^{3}+2x^{2}-x+20
|
extreme f(x,y)=y^2+2y-2x^2y
|
extreme\:f(x,y)=y^{2}+2y-2x^{2}y
|
P(a,b)=a^2-6a+9-b^2
|
P(a,b)=a^{2}-6a+9-b^{2}
|
extreme f(x,y)=x^3+y^3+15xy
|
extreme\:f(x,y)=x^{3}+y^{3}+15xy
|
extreme f(x,y)=x^{e-2x^2-2y^2}
|
extreme\:f(x,y)=x^{e-2x^{2}-2y^{2}}
|
extreme f(x)=xln(x/3),0.1<= x<= 3
|
extreme\:f(x)=x\ln(\frac{x}{3}),0.1\le\:x\le\:3
|
domain of f(x)=(5x)/(x^2-4)
|
domain\:f(x)=\frac{5x}{x^{2}-4}
|
extreme f(x)=2x^3-6x^2+6x-8
|
extreme\:f(x)=2x^{3}-6x^{2}+6x-8
|
extreme x^3-27x+51
|
extreme\:x^{3}-27x+51
|
extreme x^3-27x+57
|
extreme\:x^{3}-27x+57
|
extreme f(x)=2x^3-6x^2+6x+1
|
extreme\:f(x)=2x^{3}-6x^{2}+6x+1
|
extreme f(x)=(x+3)-5
|
extreme\:f(x)=(x+3)-5
|
extreme x^3-12x^2-27x+11,(1,10)
|
extreme\:x^{3}-12x^{2}-27x+11,(1,10)
|
extreme f(x)= 1/3 x^3-7/2 x^2+6x+1
|
extreme\:f(x)=\frac{1}{3}x^{3}-\frac{7}{2}x^{2}+6x+1
|
extreme f(x,y)=e^{x^2+1}+e^{y^2+1}
|
extreme\:f(x,y)=e^{x^{2}+1}+e^{y^{2}+1}
|
extreme f(x)=(2x^2+5)/(x^2-25)
|
extreme\:f(x)=\frac{2x^{2}+5}{x^{2}-25}
|
f(x,y)=x-5y+6
|
f(x,y)=x-5y+6
|
extreme f(x)=2x-6x^{1/3}
|
extreme\:f(x)=2x-6x^{\frac{1}{3}}
|
extreme f(x)=3x^4-4x^3-12x^2+11
|
extreme\:f(x)=3x^{4}-4x^{3}-12x^{2}+11
|
extreme f(x)=(1+(20)/x)sqrt(x^2+144)
|
extreme\:f(x)=(1+\frac{20}{x})\sqrt{x^{2}+144}
|
extreme 4sin(x)+4cos(x),0<= x<= pi/2
|
extreme\:4\sin(x)+4\cos(x),0\le\:x\le\:\frac{π}{2}
|
extreme f(x,y)=x^2-xy+y^2-4x+4y
|
extreme\:f(x,y)=x^{2}-xy+y^{2}-4x+4y
|
f(x,y)=e^{2y}(2x^2-2xy+1)
|
f(x,y)=e^{2y}(2x^{2}-2xy+1)
|
extreme f(x)=2x^2-4x+y^2-6y+1
|
extreme\:f(x)=2x^{2}-4x+y^{2}-6y+1
|
extreme f(x)=x^3-12x^2-27x+2,-2<= x<= 0
|
extreme\:f(x)=x^{3}-12x^{2}-27x+2,-2\le\:x\le\:0
|
extreme f(x)=-4x^3+12x^2
|
extreme\:f(x)=-4x^{3}+12x^{2}
|
inverse of (x+1)/(x+8)
|
inverse\:\frac{x+1}{x+8}
|
extreme f(x)=(8x)/(x^2+16)
|
extreme\:f(x)=\frac{8x}{x^{2}+16}
|
extreme ((x^2-1))/((x-3)^2)
|
extreme\:\frac{(x^{2}-1)}{(x-3)^{2}}
|
extreme s(t)=-4.9t^2+29t+2
|
extreme\:s(t)=-4.9t^{2}+29t+2
|
minimum y=(x+3)^2-7
|
minimum\:y=(x+3)^{2}-7
|
extreme f(x)=3x-1/2 x^2-1/2 ln(x)
|
extreme\:f(x)=3x-\frac{1}{2}x^{2}-\frac{1}{2}\ln(x)
|
f(x)=20.85xy+10.7x^2+51.75y^2
|
f(x)=20.85xy+10.7x^{2}+51.75y^{2}
|
extreme x^5-x^3
|
extreme\:x^{5}-x^{3}
|
extreme f(x)=6sin(2x)
|
extreme\:f(x)=6\sin(2x)
|
symmetry x^3-y^2=64
|
symmetry\:x^{3}-y^{2}=64
|
extreme x^2+2x+6
|
extreme\:x^{2}+2x+6
|
extreme f(x)=x^2+2y^2-4x+12y
|
extreme\:f(x)=x^{2}+2y^{2}-4x+12y
|
extreme x^2-6x+4
|
extreme\:x^{2}-6x+4
|
extreme x^2-6x+9
|
extreme\:x^{2}-6x+9
|
extreme f(x)=-2x^3+6x^2-7
|
extreme\:f(x)=-2x^{3}+6x^{2}-7
|
extreme f(x)=-2x^3+6x^2-9
|
extreme\:f(x)=-2x^{3}+6x^{2}-9
|
extreme f(x)=x^2(x-2)^3
|
extreme\:f(x)=x^{2}(x-2)^{3}
|
extreme f(x)=(6x^5)/5-15x^3-81x+2
|
extreme\:f(x)=\frac{6x^{5}}{5}-15x^{3}-81x+2
|
extreme-0.1t^20.8t+98.8
|
extreme\:-0.1t^{2}0.8t+98.8
|
extreme f(x,y)=x^3+y^3-108x-27y-6
|
extreme\:f(x,y)=x^{3}+y^{3}-108x-27y-6
|
range of (1+x^2)/(x^2)
|
range\:\frac{1+x^{2}}{x^{2}}
|
domain of f(x)= 1/(6x^2-6)
|
domain\:f(x)=\frac{1}{6x^{2}-6}
|
extreme f(x)=x^4+x^3-3x^2-5x-2
|
extreme\:f(x)=x^{4}+x^{3}-3x^{2}-5x-2
|
extreme f(x)=cos(pix),0<= x<= 1/6
|
extreme\:f(x)=\cos(πx),0\le\:x\le\:\frac{1}{6}
|
extreme f(x)=-2x^3+12x
|
extreme\:f(x)=-2x^{3}+12x
|
f(x,y)=6e^{-2x-2y}
|
f(x,y)=6e^{-2x-2y}
|
extreme f(x)=45-3x
|
extreme\:f(x)=45-3x
|
extreme f(x)=x^3(1-2x)
|
extreme\:f(x)=x^{3}(1-2x)
|
extreme f(x,y)=x^2+y^2-6x+y
|
extreme\:f(x,y)=x^{2}+y^{2}-6x+y
|
f(x,y)=x^2-xy+y^2-2y+xp(1.1)
|
f(x,y)=x^{2}-xy+y^{2}-2y+xp(1.1)
|
extreme 2x^2-8xy+10y^2+10x-4y-5
|
extreme\:2x^{2}-8xy+10y^{2}+10x-4y-5
|
inverse of f(x)=0.9^{-188.5+x}+105
|
inverse\:f(x)=0.9^{-188.5+x}+105
|
extreme f(x)=(2x)/(sqrt(x^2+2))
|
extreme\:f(x)=\frac{2x}{\sqrt{x^{2}+2}}
|
extreme ln(2x-3)-ln(x+5)+1
|
extreme\:\ln(2x-3)-\ln(x+5)+1
|
extreme f(x)=sin^2(x)+cos(x),0<x<2pi
|
extreme\:f(x)=\sin^{2}(x)+\cos(x),0<x<2π
|
extreme f(x)=3+6x^2-4x^3
|
extreme\:f(x)=3+6x^{2}-4x^{3}
|
extreme f(x,y)=x^2
|
extreme\:f(x,y)=x^{2}
|
extreme f(x)=-5x^3+60x+2
|
extreme\:f(x)=-5x^{3}+60x+2
|
extreme f(x)=-5x^3+60x+3
|
extreme\:f(x)=-5x^{3}+60x+3
|
extreme f(x)=x^3-5x^2-8x+2
|
extreme\:f(x)=x^{3}-5x^{2}-8x+2
|
slope of y=2x-3
|
slope\:y=2x-3
|
f(x,y)=9x^2+xy+10y^2
|
f(x,y)=9x^{2}+xy+10y^{2}
|
f(x,y)=x^2+y^2-2y+1
|
f(x,y)=x^{2}+y^{2}-2y+1
|
f(x,y)=sqrt(x^2+y^2+4)
|
f(x,y)=\sqrt{x^{2}+y^{2}+4}
|
extreme f(x,y)=-[x^2-y^2]e^{-x^2-y^2}
|
extreme\:f(x,y)=-[x^{2}-y^{2}]e^{-x^{2}-y^{2}}
|
extreme f(x)=-x^2-y^2+4x+4y
|
extreme\:f(x)=-x^{2}-y^{2}+4x+4y
|
extreme f(x)=6x^5-2x^4
|
extreme\:f(x)=6x^{5}-2x^{4}
|
extreme f(x)=-x^3+3x^2+2880x-500
|
extreme\:f(x)=-x^{3}+3x^{2}+2880x-500
|
extreme x^3-3x^2-9x+10
|
extreme\:x^{3}-3x^{2}-9x+10
|
extreme f(x)=x^5-5/3 x^3+2
|
extreme\:f(x)=x^{5}-\frac{5}{3}x^{3}+2
|
y=(x^2)/(10)+(9x)/(10)+11/5
|
y=\frac{x^{2}}{10}+\frac{9x}{10}+\frac{11}{5}
|
extreme f(x)=x-sin(-x)
|
extreme\:f(x)=x-\sin(-x)
|
extreme y=xsqrt(x-6)
|
extreme\:y=x\sqrt{x-6}
|
extreme f(x)=x+sqrt(3-x)
|
extreme\:f(x)=x+\sqrt{3-x}
|
extreme f(x)=xe^{-(x^2)/(72)}
|
extreme\:f(x)=xe^{-\frac{x^{2}}{72}}
|
extreme f(x)=x(25-46+2x)(46/2-x)
|
extreme\:f(x)=x(25-46+2x)(\frac{46}{2}-x)
|
extreme f(x)=(2x^3)/3-x^2+x/2+1/2
|
extreme\:f(x)=\frac{2x^{3}}{3}-x^{2}+\frac{x}{2}+\frac{1}{2}
|
extreme f(x)=y=x^5-15x^3+100
|
extreme\:f(x)=y=x^{5}-15x^{3}+100
|
extreme f(x)=(ln(x^2+1))
|
extreme\:f(x)=(\ln(x^{2}+1))
|
extreme f(x)=3x+5x^{-1}
|
extreme\:f(x)=3x+5x^{-1}
|
extreme f(x)=(x-1)^5
|
extreme\:f(x)=(x-1)^{5}
|
asymptotes of f(x)=(x+5)/(x^3+27)
|
asymptotes\:f(x)=\frac{x+5}{x^{3}+27}
|
f(x,y)=3xy-2x^3y^3
|
f(x,y)=3xy-2x^{3}y^{3}
|