extreme f(x)=x^2=-4ay
|
extreme\:f(x)=x^{2}=-4ay
|
extreme-x^2-4y^2+8x-8y-16
|
extreme\:-x^{2}-4y^{2}+8x-8y-16
|
extreme f(x)=(x-1)^2+y^2=25
|
extreme\:f(x)=(x-1)^{2}+y^{2}=25
|
extreme f(x)=2x^2ln(x)-5x^2
|
extreme\:f(x)=2x^{2}\ln(x)-5x^{2}
|
f(x,y)=ln(2x+y)-x^2-3y
|
f(x,y)=\ln(2x+y)-x^{2}-3y
|
f(x,y)=ln(2x+y)-x^2-4y
|
f(x,y)=\ln(2x+y)-x^{2}-4y
|
U(X,Y)=X^{0.4}Y^{0.6}
|
U(X,Y)=X^{0.4}Y^{0.6}
|
extreme f(x)=(2x+4)/(x+1)
|
extreme\:f(x)=\frac{2x+4}{x+1}
|
domain of f(x)=4x-10,x> 2
|
domain\:f(x)=4x-10,x\gt\:2
|
pp+qq
|
pp+qq
|
minimum f(x,y)=18xy+2500
|
minimum\:f(x,y)=18xy+2500
|
extreme f(x)=-(x+2)^2+8
|
extreme\:f(x)=-(x+2)^{2}+8
|
f(x)=Ix+1I-Ix+1I
|
f(x)=Ix+1I-Ix+1I
|
extreme y=x^3-6x^2+9x+5
|
extreme\:y=x^{3}-6x^{2}+9x+5
|
extreme e^{8x^2+5x^2+8}
|
extreme\:e^{8x^{2}+5x^{2}+8}
|
extreme f(x)= 1/(x^2+2x+9),-2<= x<= 1
|
extreme\:f(x)=\frac{1}{x^{2}+2x+9},-2\le\:x\le\:1
|
extreme g(x)=xsqrt(32-x^2)
|
extreme\:g(x)=x\sqrt{32-x^{2}}
|
minimum x^5-2
|
minimum\:x^{5}-2
|
symmetry y=4x^2-56x+204
|
symmetry\:y=4x^{2}-56x+204
|
extreme f(x)= 1/2 x^2+2x-10
|
extreme\:f(x)=\frac{1}{2}x^{2}+2x-10
|
extreme 1/(s^2-1)
|
extreme\:\frac{1}{s^{2}-1}
|
minimum x^2+5x-36
|
minimum\:x^{2}+5x-36
|
extreme f(x)=sqrt(x)ln(7x),(0,infinity)
|
extreme\:f(x)=\sqrt{x}\ln(7x),(0,\infty\:)
|
extreme f(x)=x^2+xy+y^2-6x+2
|
extreme\:f(x)=x^{2}+xy+y^{2}-6x+2
|
extreme f(x,y)=x^2+4y^2-2x+8y+4
|
extreme\:f(x,y)=x^{2}+4y^{2}-2x+8y+4
|
minimum 2x^2+8x+12
|
minimum\:2x^{2}+8x+12
|
f(x,y)=x^2+3y^2-2xy-8x
|
f(x,y)=x^{2}+3y^{2}-2xy-8x
|
extreme (x-9)ln(x-9)
|
extreme\:(x-9)\ln(x-9)
|
inverse of (4+3x)/(2-x)
|
inverse\:\frac{4+3x}{2-x}
|
extreme f(x)=((x^2+1))/(x^2-1)
|
extreme\:f(x)=\frac{(x^{2}+1)}{x^{2}-1}
|
extreme f(x,y)=x^2+xy+y^2+4x-4y+6
|
extreme\:f(x,y)=x^{2}+xy+y^{2}+4x-4y+6
|
f(x,y)=yln(x+2y)
|
f(x,y)=y\ln(x+2y)
|
extreme f(x)=2x^3-24x^2+72x+7,(3,7)
|
extreme\:f(x)=2x^{3}-24x^{2}+72x+7,(3,7)
|
extreme x^4+y^4-4xy+x
|
extreme\:x^{4}+y^{4}-4xy+x
|
extreme y=x^3+3x^2+1
|
extreme\:y=x^{3}+3x^{2}+1
|
extreme f(x)=-4x^3-3x^2+6x+1
|
extreme\:f(x)=-4x^{3}-3x^{2}+6x+1
|
minimum 150(xy)^2+(0.5x+2y-2)^2
|
minimum\:150(xy)^{2}+(0.5x+2y-2)^{2}
|
extreme 3x^2-5x-1
|
extreme\:3x^{2}-5x-1
|
f(x,y)=x^2-5yx+3y^2
|
f(x,y)=x^{2}-5yx+3y^{2}
|
range of (2sqrt(x))/(x^2+6)
|
range\:\frac{2\sqrt{x}}{x^{2}+6}
|
extreme y=((2x+3))/(x+2)
|
extreme\:y=\frac{(2x+3)}{x+2}
|
extreme f(x)=(x^2-5x+7)/(x-3)
|
extreme\:f(x)=\frac{x^{2}-5x+7}{x-3}
|
extreme f(x)=(3x^3-9)
|
extreme\:f(x)=(3x^{3}-9)
|
extreme f(x)=(x^2-4)/(e^{x^4-1)}
|
extreme\:f(x)=\frac{x^{2}-4}{e^{x^{4}-1}}
|
extreme f(x)=2x-5x^2+4
|
extreme\:f(x)=2x-5x^{2}+4
|
extreme f(x)=(4x)/(x^2+16)
|
extreme\:f(x)=\frac{4x}{x^{2}+16}
|
extreme f(x,y)=x^4+y^4-4xy+x
|
extreme\:f(x,y)=x^{4}+y^{4}-4xy+x
|
extreme-2x^3+14x^2+2y^2+4xy
|
extreme\:-2x^{3}+14x^{2}+2y^{2}+4xy
|
inverse of f(x)=(3(x+10))/5
|
inverse\:f(x)=\frac{3(x+10)}{5}
|
extreme f(x)=9(cos(x))^2-18sin(x)
|
extreme\:f(x)=9(\cos(x))^{2}-18\sin(x)
|
extreme (x+1)e^{-x}
|
extreme\:(x+1)e^{-x}
|
extreme sqrt(x+y)
|
extreme\:\sqrt{x+y}
|
minimum 256294314
|
minimum\:256294314
|
p(x)=2x^2-15yq(x,y)=2x+3y-2
|
p(x)=2x^{2}-15yq(x,y)=2x+3y-2
|
extreme f(x)=x^2-12x+35
|
extreme\:f(x)=x^{2}-12x+35
|
extreme f(x)=x^2-12x+36
|
extreme\:f(x)=x^{2}-12x+36
|
extreme f(x)=x^2-4,-2<= x<= 3
|
extreme\:f(x)=x^{2}-4,-2\le\:x\le\:3
|
extreme f(x)=x(21-37+2x)(37/2-x)
|
extreme\:f(x)=x(21-37+2x)(\frac{37}{2}-x)
|
extreme f(x)=4x^4-2x^3-7x^2+3x+1
|
extreme\:f(x)=4x^{4}-2x^{3}-7x^{2}+3x+1
|
domain of 1/(arccos(t-2))
|
domain\:\frac{1}{\arccos(t-2)}
|
domain of f(x)=e^{-2x}
|
domain\:f(x)=e^{-2x}
|
extreme f(x)=x^3+10x+21
|
extreme\:f(x)=x^{3}+10x+21
|
extreme (2x)/3-17
|
extreme\:\frac{2x}{3}-17
|
extreme y=(3x)/(x^2-16)
|
extreme\:y=\frac{3x}{x^{2}-16}
|
extreme y=-x+2cos(x)
|
extreme\:y=-x+2\cos(x)
|
extreme f(x)=[-5.6]
|
extreme\:f(x)=[-5.6]
|
extreme f(x)=x+y+3
|
extreme\:f(x)=x+y+3
|
f(x,y)=e^{2x-4y-x^2-y^2}
|
f(x,y)=e^{2x-4y-x^{2}-y^{2}}
|
extreme f(x)=-4x^2+172x-1528
|
extreme\:f(x)=-4x^{2}+172x-1528
|
extreme f(x)=x(5-x)(8-x)
|
extreme\:f(x)=x(5-x)(8-x)
|
parallel 4x-3y=-21
|
parallel\:4x-3y=-21
|
extreme f(x)=x^4-8x^3+16x^2+6
|
extreme\:f(x)=x^{4}-8x^{3}+16x^{2}+6
|
extreme f(x)=x^4-8x^3+16x^2+7
|
extreme\:f(x)=x^{4}-8x^{3}+16x^{2}+7
|
extreme f(x)=2x^2-10x+5,0<= x<= 7
|
extreme\:f(x)=2x^{2}-10x+5,0\le\:x\le\:7
|
extreme sin(4x)
|
extreme\:\sin(4x)
|
extreme f(x)=((x^2-4x+4))/(x-8)
|
extreme\:f(x)=\frac{(x^{2}-4x+4)}{x-8}
|
extreme f(x)=(x^3)/3-10x^2+75x+20
|
extreme\:f(x)=\frac{x^{3}}{3}-10x^{2}+75x+20
|
extreme f(x,y)=x^2-xy+y^2-3x+3y
|
extreme\:f(x,y)=x^{2}-xy+y^{2}-3x+3y
|
extreme (x^3+1)/(x+1)
|
extreme\:\frac{x^{3}+1}{x+1}
|
extreme f(x)=\sqrt[3]{x},-27<= x<= 8
|
extreme\:f(x)=\sqrt[3]{x},-27\le\:x\le\:8
|
extreme 6y=2x^3-27x^2+108x
|
extreme\:6y=2x^{3}-27x^{2}+108x
|
parallel-6
|
parallel\:-6
|
minimum |x|+|x+1|+|x^2+1|
|
minimum\:\left|x\right|+\left|x+1\right|+\left|x^{2}+1\right|
|
y=xz
|
y=xz
|
extreme 2cos^2(x)
|
extreme\:2\cos^{2}(x)
|
f(x,y)=4x^2+y^2+1
|
f(x,y)=4x^{2}+y^{2}+1
|
extreme f(x)=5e^{x^2-10x}
|
extreme\:f(x)=5e^{x^{2}-10x}
|
extreme f(x)=2x^2(x^2-2)
|
extreme\:f(x)=2x^{2}(x^{2}-2)
|
extreme-3x+ln(x)
|
extreme\:-3x+\ln(x)
|
extreme f(x)=52(70-x)
|
extreme\:f(x)=52(70-x)
|
inverse of f(x)=3-2x
|
inverse\:f(x)=3-2x
|
extreme f(x)=x^{11}-9x^7+5x-3
|
extreme\:f(x)=x^{11}-9x^{7}+5x-3
|
extreme f(x)=x^2+y^2-2x-2y+3
|
extreme\:f(x)=x^{2}+y^{2}-2x-2y+3
|
extreme f(x)=2x^2+3x-1
|
extreme\:f(x)=2x^{2}+3x-1
|
extreme f(x)=ln(6-ln(x))
|
extreme\:f(x)=\ln(6-\ln(x))
|
extreme 7x^4-4x^2-8x-5
|
extreme\:7x^{4}-4x^{2}-8x-5
|
minimum 1-(y+1)sqrt(1-y^2)+y
|
minimum\:1-(y+1)\sqrt{1-y^{2}}+y
|
f(x,y)=e^x-e^{xy}
|
f(x,y)=e^{x}-e^{xy}
|
f(x,y)=2x^2-8xy+10y^2+10x-4y-5
|
f(x,y)=2x^{2}-8xy+10y^{2}+10x-4y-5
|
extreme 3+sin(x)
|
extreme\:3+\sin(x)
|