extreme x^2y+y^2-4y
|
extreme\:x^{2}y+y^{2}-4y
|
extreme x^2+y^2+4xy
|
extreme\:x^{2}+y^{2}+4xy
|
extreme f(x)=155000x-155x^2
|
extreme\:f(x)=155000x-155x^{2}
|
extreme 6x^2-3x^3
|
extreme\:6x^{2}-3x^{3}
|
extreme f(x)=6x^2-12x
|
extreme\:f(x)=6x^{2}-12x
|
extreme ((x-3)(x+2))/((5x+1)(2x-3))
|
extreme\:\frac{(x-3)(x+2)}{(5x+1)(2x-3)}
|
extreme ln(x^2-1)
|
extreme\:\ln(x^{2}-1)
|
extreme f(x)=-x^3+15x^2+13
|
extreme\:f(x)=-x^{3}+15x^{2}+13
|
extreme x^{1/3}(x^2-9),-4<= x<= 2
|
extreme\:x^{\frac{1}{3}}(x^{2}-9),-4\le\:x\le\:2
|
periodicity of f(x)=sec(3x)
|
periodicity\:f(x)=\sec(3x)
|
extreme f(x)=xe^{-x^2}[0.2]
|
extreme\:f(x)=xe^{-x^{2}}[0.2]
|
extreme f(x)=-2x^3+30x^2-54x+6
|
extreme\:f(x)=-2x^{3}+30x^{2}-54x+6
|
extreme f(x)=-2x^3+30x^2-54x+8
|
extreme\:f(x)=-2x^{3}+30x^{2}-54x+8
|
minimum-6x+x^2
|
minimum\:-6x+x^{2}
|
f(x,y)=6x-8y+7xy
|
f(x,y)=6x-8y+7xy
|
extreme f(x)=-x^3+3x^2-9
|
extreme\:f(x)=-x^{3}+3x^{2}-9
|
f(x)=ysqrt(x)-x^2
|
f(x)=y\sqrt{x}-x^{2}
|
symmetry y=4x^6+x^8
|
symmetry\:y=4x^{6}+x^{8}
|
f(x,y)=5x^2y^3+4x^2+5y
|
f(x,y)=5x^{2}y^{3}+4x^{2}+5y
|
extreme f(x)=4x^3-36x^2+6
|
extreme\:f(x)=4x^{3}-36x^{2}+6
|
extreme f(x)=x^2+y^2-14x+12y-13
|
extreme\:f(x)=x^{2}+y^{2}-14x+12y-13
|
extreme f(x)=((t+3)^3)/((t-1)^2)
|
extreme\:f(x)=\frac{(t+3)^{3}}{(t-1)^{2}}
|
extreme x^2+xy+y^2-3x+2
|
extreme\:x^{2}+xy+y^{2}-3x+2
|
extreme f(x)=25x+(16)/x
|
extreme\:f(x)=25x+\frac{16}{x}
|
extreme f(x)=x^2-2x-3,0<= x<= 1
|
extreme\:f(x)=x^{2}-2x-3,0\le\:x\le\:1
|
extreme f(x)=((x^2+y^2)e^{(-x)/3})
|
extreme\:f(x)=((x^{2}+y^{2})e^{\frac{-x}{3}})
|
extreme f(x)=7x+ln(x)
|
extreme\:f(x)=7x+\ln(x)
|
extreme y=x^{2/7}(x^2-5)
|
extreme\:y=x^{\frac{2}{7}}(x^{2}-5)
|
asymptotes of f(x)=(2-5x)/(2+2x)
|
asymptotes\:f(x)=\frac{2-5x}{2+2x}
|
y=-tu(t-1)+tu(t-2)
|
y=-tu(t-1)+tu(t-2)
|
extreme f(x)=2x^2+2y^2-8x+16y
|
extreme\:f(x)=2x^{2}+2y^{2}-8x+16y
|
extreme f(x)=x^2+y^2-8y+16
|
extreme\:f(x)=x^{2}+y^{2}-8y+16
|
extreme x^3(x-1)^2(7x-4)
|
extreme\:x^{3}(x-1)^{2}(7x-4)
|
extreme (x^2+x-2)/(x+3)
|
extreme\:\frac{x^{2}+x-2}{x+3}
|
f(x,y)=e^xln(1+y)
|
f(x,y)=e^{x}\ln(1+y)
|
extreme y=x^{2/7}(x^2-4)
|
extreme\:y=x^{\frac{2}{7}}(x^{2}-4)
|
extreme x^2e^{x^2}
|
extreme\:x^{2}e^{x^{2}}
|
extreme f(x,y)=8x-x^2-4y-y^2
|
extreme\:f(x,y)=8x-x^{2}-4y-y^{2}
|
distance (6,1)(2,-3)
|
distance\:(6,1)(2,-3)
|
extreme f(x)=x^2-4x-6[0.2]
|
extreme\:f(x)=x^{2}-4x-6[0.2]
|
extreme f(x)=-64x^3+12x+9
|
extreme\:f(x)=-64x^{3}+12x+9
|
f(x,y)=-3x^2-2y^2+24x+20y+600
|
f(x,y)=-3x^{2}-2y^{2}+24x+20y+600
|
extreme f(x)=5(1/(x-4)-1/(x+2))
|
extreme\:f(x)=5(\frac{1}{x-4}-\frac{1}{x+2})
|
extreme (x^3-4x^2)/(x^2+1)
|
extreme\:\frac{x^{3}-4x^{2}}{x^{2}+1}
|
extreme f(x)=10+5x-x^2
|
extreme\:f(x)=10+5x-x^{2}
|
extreme f(x)=2x^2nx-19x^2
|
extreme\:f(x)=2x^{2}nx-19x^{2}
|
extreme f(x,y,z)=-x^2-3y^2+4x-6y-5
|
extreme\:f(x,y,z)=-x^{2}-3y^{2}+4x-6y-5
|
extreme f(x)=x^2-2x+6y^2
|
extreme\:f(x)=x^{2}-2x+6y^{2}
|
extreme f(x)=4x+3
|
extreme\:f(x)=4x+3
|
perpendicular y=-2x-4
|
perpendicular\:y=-2x-4
|
extreme f(z)=x^2-y^2-2x+4y+6
|
extreme\:f(z)=x^{2}-y^{2}-2x+4y+6
|
extreme f(x)=(x^3)/3-x^2-3x-1,2<= x<= 7
|
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-3x-1,2\le\:x\le\:7
|
extreme f(x)=x^2-2xy+2y^2+2x
|
extreme\:f(x)=x^{2}-2xy+2y^{2}+2x
|
extreme f(x)=sqrt(416-x)x
|
extreme\:f(x)=\sqrt{416-x}x
|
extreme f(x)=x^{4/5}-4
|
extreme\:f(x)=x^{\frac{4}{5}}-4
|
extreme f(x)=((5x^4)/(ln(x)))
|
extreme\:f(x)=(\frac{5x^{4}}{\ln(x)})
|
extreme f(x)=-(4/(x^2)),(-3,-1)
|
extreme\:f(x)=-(\frac{4}{x^{2}}),(-3,-1)
|
extreme f(x)=4-x^3+5x
|
extreme\:f(x)=4-x^{3}+5x
|
minimum f(x,y)=14xy-x^3-7y^2
|
minimum\:f(x,y)=14xy-x^{3}-7y^{2}
|
extreme f(x)=2x^3-6x+11
|
extreme\:f(x)=2x^{3}-6x+11
|
midpoint (5,1)(4,2)
|
midpoint\:(5,1)(4,2)
|
domain of f(x)=(1)/(|x^{(2)}-4|)
|
domain\:f(x)=(1)/(|x^{(2)}-4|)
|
extreme f(x)=sin(5x),0<= x<= (2pi)/5
|
extreme\:f(x)=\sin(5x),0\le\:x\le\:\frac{2π}{5}
|
extreme y=16x^4+64x^3
|
extreme\:y=16x^{4}+64x^{3}
|
extreme 3x^2-2xy+y^2-8y
|
extreme\:3x^{2}-2xy+y^{2}-8y
|
extreme f(x)=32e^{4x}x-28e^{4x}
|
extreme\:f(x)=32e^{4x}x-28e^{4x}
|
extreme f(x)=12x-9x^2+2x^3
|
extreme\:f(x)=12x-9x^{2}+2x^{3}
|
f(x,y)=5x^2-4xy+4y^2+12x+25
|
f(x,y)=5x^{2}-4xy+4y^{2}+12x+25
|
extreme f(x)=2x^3-(12x^2)/2-2[-1.3]
|
extreme\:f(x)=2x^{3}-\frac{12x^{2}}{2}-2[-1.3]
|
extreme (27x^2)/((2-x)^3)
|
extreme\:\frac{27x^{2}}{(2-x)^{3}}
|
extreme (8x^2)/(x-6),-3<= x<= 2
|
extreme\:\frac{8x^{2}}{x-6},-3\le\:x\le\:2
|
range of x^2+2x+1
|
range\:x^{2}+2x+1
|
f(x,y)=x+3y
|
f(x,y)=x+3y
|
extreme g(x)=x^3-12x^2+45x+4
|
extreme\:g(x)=x^{3}-12x^{2}+45x+4
|
extreme g(x)=x^3-12x^2+45x+1
|
extreme\:g(x)=x^{3}-12x^{2}+45x+1
|
extreme g(x)=x^3-12x^2+45x+2
|
extreme\:g(x)=x^{3}-12x^{2}+45x+2
|
extreme g(x)=x^3-12x^2+45x+7
|
extreme\:g(x)=x^{3}-12x^{2}+45x+7
|
extreme f(x)=-2-3x+x^2
|
extreme\:f(x)=-2-3x+x^{2}
|
extreme f(x)=((x^2-1))/(x^2+2x-3)
|
extreme\:f(x)=\frac{(x^{2}-1)}{x^{2}+2x-3}
|
extreme f(x)=-3t^2+72t+243
|
extreme\:f(x)=-3t^{2}+72t+243
|
extreme y=-2x^2e^{-2x}-2
|
extreme\:y=-2x^{2}e^{-2x}-2
|
range of f(x)=(x+3)/(x+6)
|
range\:f(x)=\frac{x+3}{x+6}
|
extreme f(x)=x(22-37+2x)(37/2-x)
|
extreme\:f(x)=x(22-37+2x)(\frac{37}{2}-x)
|
extreme f(x)=x^8e^x-5
|
extreme\:f(x)=x^{8}e^{x}-5
|
extreme f(x)= 1/2 xe^{-5x^2}
|
extreme\:f(x)=\frac{1}{2}xe^{-5x^{2}}
|
extreme f(x)=sqrt(x^2+5)-x
|
extreme\:f(x)=\sqrt{x^{2}+5}-x
|
extreme f(x)=2x^3-36x^2+162x+3
|
extreme\:f(x)=2x^{3}-36x^{2}+162x+3
|
extreme (x+1)^2(x-2)
|
extreme\:(x+1)^{2}(x-2)
|
extreme f(x)=x^5-5x^4+5
|
extreme\:f(x)=x^{5}-5x^{4}+5
|
extreme f(x)=x^2+y^2+8x-12y-7
|
extreme\:f(x)=x^{2}+y^{2}+8x-12y-7
|
inverse of f(x)=sqrt(7x)
|
inverse\:f(x)=\sqrt{7x}
|
extreme 4x^3-48x-6
|
extreme\:4x^{3}-48x-6
|
extreme f(x)= 1/4 x^4-4x^2+2
|
extreme\:f(x)=\frac{1}{4}x^{4}-4x^{2}+2
|
extreme 300x-4x^3
|
extreme\:300x-4x^{3}
|
extreme x^3+12x^2-27x+2
|
extreme\:x^{3}+12x^{2}-27x+2
|
extreme f(x)=x^3-9x^2+15x-4
|
extreme\:f(x)=x^{3}-9x^{2}+15x-4
|
P(x,y)=3x^2y+4xy^2-y^{-4}
|
P(x,y)=3x^{2}y+4xy^{2}-y^{-4}
|
extreme f(x)=(x+10)((60)/x+6)
|
extreme\:f(x)=(x+10)(\frac{60}{x}+6)
|
extreme f(x)= 1/2 x^4-4x^2+5
|
extreme\:f(x)=\frac{1}{2}x^{4}-4x^{2}+5
|
extreme f(x)= 1/2 x^4-4x^2+3
|
extreme\:f(x)=\frac{1}{2}x^{4}-4x^{2}+3
|