domain of 7c-14
|
domain\:7c-14
|
extreme f(x)=-3x^2+180x+190,0<= x<= 40
|
extreme\:f(x)=-3x^{2}+180x+190,0\le\:x\le\:40
|
extreme f(x)=(x+2)^{2/3}(x-2)^{1/3}
|
extreme\:f(x)=(x+2)^{\frac{2}{3}}(x-2)^{\frac{1}{3}}
|
extreme f(x)=-x^3-6x^2+6
|
extreme\:f(x)=-x^{3}-6x^{2}+6
|
extreme (x^2-1)/(x^2+4)
|
extreme\:\frac{x^{2}-1}{x^{2}+4}
|
extreme f(x,y)=sqrt(y-x)
|
extreme\:f(x,y)=\sqrt{y-x}
|
extreme 11x^2+2*(-25)x(1-x)+24(1-x)^2
|
extreme\:11x^{2}+2\cdot\:(-25)x(1-x)+24(1-x)^{2}
|
f(x,y)=x^2+y^2+(16)/x+2/y
|
f(x,y)=x^{2}+y^{2}+\frac{16}{x}+\frac{2}{y}
|
extreme f(x)=-5x^4-5x^3-2
|
extreme\:f(x)=-5x^{4}-5x^{3}-2
|
asymptotes of f(x)=((2x^2-x-10))/(x+2)
|
asymptotes\:f(x)=\frac{(2x^{2}-x-10)}{x+2}
|
extreme f(x)=-x^3-6x^2-1
|
extreme\:f(x)=-x^{3}-6x^{2}-1
|
extreme f(x)=(x^2-4)/(x^2+4),-5<= x<= 5
|
extreme\:f(x)=\frac{x^{2}-4}{x^{2}+4},-5\le\:x\le\:5
|
extreme f(x)=7x^2-56x+84
|
extreme\:f(x)=7x^{2}-56x+84
|
extreme y=-4x^2-5x+1
|
extreme\:y=-4x^{2}-5x+1
|
minimum f(x)=(x-1)e^{-x}
|
minimum\:f(x)=(x-1)e^{-x}
|
extreme f(x)=|(x^2-7x-6)/(x-5)|
|
extreme\:f(x)=\left|\frac{x^{2}-7x-6}{x-5}\right|
|
extreme (x+1)^3(x-3)
|
extreme\:(x+1)^{3}(x-3)
|
extreme f(x)=2x^3+9x^2-60x+6,-5<= x<= 5
|
extreme\:f(x)=2x^{3}+9x^{2}-60x+6,-5\le\:x\le\:5
|
minimum f(x)=x^{1/7}
|
minimum\:f(x)=x^{\frac{1}{7}}
|
extreme 3\sqrt[3]{2a}-6\sqrt[3]{2a}
|
extreme\:3\sqrt[3]{2a}-6\sqrt[3]{2a}
|
range of f(x)=1-2^x
|
range\:f(x)=1-2^{x}
|
extreme f(x,y)=x^2+2x-y^2
|
extreme\:f(x,y)=x^{2}+2x-y^{2}
|
extreme f(x)=x^4-108x
|
extreme\:f(x)=x^{4}-108x
|
extreme f(x,y)=11x^2-2xy+2y^2+3
|
extreme\:f(x,y)=11x^{2}-2xy+2y^{2}+3
|
extreme y=(2e^{3x})/(-3x-1)
|
extreme\:y=\frac{2e^{3x}}{-3x-1}
|
extreme f(x)=6x^4+11x^3-x^2+x
|
extreme\:f(x)=6x^{4}+11x^{3}-x^{2}+x
|
extreme f(x)=-25x^2-20y^2+300x+480y+200
|
extreme\:f(x)=-25x^{2}-20y^{2}+300x+480y+200
|
extreme 24x^3-3x^4-x^3(24-3x)
|
extreme\:24x^{3}-3x^{4}-x^{3}(24-3x)
|
extreme y=9x+9sin(x),0<= x<= 2pi
|
extreme\:y=9x+9\sin(x),0\le\:x\le\:2π
|
extreme f(x)=5x^2-10x+2
|
extreme\:f(x)=5x^{2}-10x+2
|
inflection points of f(x)=2(ln(x)+1)
|
inflection\:points\:f(x)=2(\ln(x)+1)
|
extreme f(x)=5x^2-10x+8
|
extreme\:f(x)=5x^{2}-10x+8
|
extreme f(x)=8x^2+20x+8,1<= x<= 3
|
extreme\:f(x)=8x^{2}+20x+8,1\le\:x\le\:3
|
extreme f(x)= 1/6 x^3-8x+19/3
|
extreme\:f(x)=\frac{1}{6}x^{3}-8x+\frac{19}{3}
|
extreme f(x)=x-ln(6x)
|
extreme\:f(x)=x-\ln(6x)
|
f(x,y)=xy^2-xy-x^2y
|
f(x,y)=xy^{2}-xy-x^{2}y
|
extreme-7x^2+126x-560
|
extreme\:-7x^{2}+126x-560
|
minimum 20-0.06x+0.0002x^2
|
minimum\:20-0.06x+0.0002x^{2}
|
extreme f(x)=2x-5x^2
|
extreme\:f(x)=2x-5x^{2}
|
extreme 2x^2-4x+1
|
extreme\:2x^{2}-4x+1
|
f(x)=y^2+y^2*x+3x-8
|
f(x)=y^{2}+y^{2}\cdot\:x+3x-8
|
domain of f(x)=e^{1/x}
|
domain\:f(x)=e^{\frac{1}{x}}
|
minimum xe^{(-x^2)/(162)},-4<= x<= 18
|
minimum\:xe^{\frac{-x^{2}}{162}},-4\le\:x\le\:18
|
extreme f(x)=2x^3-9x^2-24x+6,-2<= x<= 5
|
extreme\:f(x)=2x^{3}-9x^{2}-24x+6,-2\le\:x\le\:5
|
extreme f(x,y)=(x^2-1)(y^2+y)
|
extreme\:f(x,y)=(x^{2}-1)(y^{2}+y)
|
extreme ln(x^2+7)
|
extreme\:\ln(x^{2}+7)
|
extreme f(x)=3x^5-20x^3+42
|
extreme\:f(x)=3x^{5}-20x^{3}+42
|
f(x,y)=3x^2-y^2-7x-y+8
|
f(x,y)=3x^{2}-y^{2}-7x-y+8
|
extreme f(x)=2+28x-2x^2
|
extreme\:f(x)=2+28x-2x^{2}
|
extreme f(x)=2x^3-x^2-4x+10,-1<= x<= 0
|
extreme\:f(x)=2x^{3}-x^{2}-4x+10,-1\le\:x\le\:0
|
extreme f(x)=-4/3 x^{3/4}
|
extreme\:f(x)=-\frac{4}{3}x^{\frac{3}{4}}
|
inverse of f(x)=18500(0.16-r^2)
|
inverse\:f(x)=18500(0.16-r^{2})
|
extreme 2sin(θ/2)
|
extreme\:2\sin(\frac{θ}{2})
|
extreme f(x)=4+8x+128x^{-1}
|
extreme\:f(x)=4+8x+128x^{-1}
|
extreme f(x)=4x^5-25x^4-40x^3+2
|
extreme\:f(x)=4x^{5}-25x^{4}-40x^{3}+2
|
extreme x^3+x^2-5x+1
|
extreme\:x^{3}+x^{2}-5x+1
|
extreme f(x)=3.6x^5+4x^3-3.7x,0<= x<= 1
|
extreme\:f(x)=3.6x^{5}+4x^{3}-3.7x,0\le\:x\le\:1
|
extreme ln(x^2+4)
|
extreme\:\ln(x^{2}+4)
|
extreme f(x)=ln(cos(x))
|
extreme\:f(x)=\ln(\cos(x))
|
extreme f(x)=x^4-32x^2+10
|
extreme\:f(x)=x^{4}-32x^{2}+10
|
extreme f(x)=x^3+y^3+3x^2-9y^2-1
|
extreme\:f(x)=x^{3}+y^{3}+3x^{2}-9y^{2}-1
|
extreme (x^2)/(x^2+243)
|
extreme\:\frac{x^{2}}{x^{2}+243}
|
inverse of f(x)=(x+12)/(x-6)
|
inverse\:f(x)=\frac{x+12}{x-6}
|
range of f(x)=|x|+2
|
range\:f(x)=|x|+2
|
extreme f(x)=6sin^2(x)+6sin(x)
|
extreme\:f(x)=6\sin^{2}(x)+6\sin(x)
|
extreme f(x)=3^2-6x-9=0
|
extreme\:f(x)=3^{2}-6x-9=0
|
extreme 36x^5+540x^4+2100x^3-30
|
extreme\:36x^{5}+540x^{4}+2100x^{3}-30
|
extreme (x+1)(x+2)(x+3)(x+4)
|
extreme\:(x+1)(x+2)(x+3)(x+4)
|
extreme y=(1/(x^2-4x-5))
|
extreme\:y=(\frac{1}{x^{2}-4x-5})
|
extreme f(x)=5cos(2x)
|
extreme\:f(x)=5\cos(2x)
|
extreme f(x)=340x^2+4080x^3,0<= x<= 0.08
|
extreme\:f(x)=340x^{2}+4080x^{3},0\le\:x\le\:0.08
|
extreme f(x)= x/(Inx),x>1
|
extreme\:f(x)=\frac{x}{Inx},x>1
|
extreme y=-x^2-6x-8
|
extreme\:y=-x^{2}-6x-8
|
extreme f(x)=xe^{-(x^2)/(162)}
|
extreme\:f(x)=xe^{-\frac{x^{2}}{162}}
|
domain of f(x)=2sqrt(x)+7
|
domain\:f(x)=2\sqrt{x}+7
|
f(x,y)=x^2+2*y^2+4*x-4*y
|
f(x,y)=x^{2}+2\cdot\:y^{2}+4\cdot\:x-4\cdot\:y
|
extreme f(x)=x^4-8x^2+18
|
extreme\:f(x)=x^{4}-8x^{2}+18
|
extreme f(x)=x^3+29x+128
|
extreme\:f(x)=x^{3}+29x+128
|
minimum x^2+4/x
|
minimum\:x^{2}+\frac{4}{x}
|
extreme f(x)=xe^{-x}[0.2]
|
extreme\:f(x)=xe^{-x}[0.2]
|
extreme f(x)=-2x^2-12x-23
|
extreme\:f(x)=-2x^{2}-12x-23
|
extreme x^2-xy+y^2+3x-2y-5
|
extreme\:x^{2}-xy+y^{2}+3x-2y-5
|
h(x)=(χ^2+4x-32)/(x^2-8x+16)
|
h(x)=\frac{χ^{2}+4x-32}{x^{2}-8x+16}
|
extreme f(x)=2x^36x^2-18x+1
|
extreme\:f(x)=2x^{3}6x^{2}-18x+1
|
inverse of f(x)=(x-3)^2-7
|
inverse\:f(x)=(x-3)^{2}-7
|
extreme f(x)=2x^3-y^2-6x+9y
|
extreme\:f(x)=2x^{3}-y^{2}-6x+9y
|
(p\Rightarrow q)
|
(p\Rightarrow\:q)
|
extreme f(x,y)=y*e^{x^2-2y^2}
|
extreme\:f(x,y)=y\cdot\:e^{x^{2}-2y^{2}}
|
extreme f(x,y)=3y^2+4xy-3x^2
|
extreme\:f(x,y)=3y^{2}+4xy-3x^{2}
|
extreme f(x,y)=2x^2+xy+y^2-x-3y
|
extreme\:f(x,y)=2x^{2}+xy+y^{2}-x-3y
|
extreme f(t)=(4-t)4^t
|
extreme\:f(t)=(4-t)4^{t}
|
extreme f(x)=2x^3-15x^2-30
|
extreme\:f(x)=2x^{3}-15x^{2}-30
|
extreme f(x)=15x^2-15x^4
|
extreme\:f(x)=15x^{2}-15x^{4}
|
extreme 6x^3-9x^2-216x+9
|
extreme\:6x^{3}-9x^{2}-216x+9
|
extreme f(x)=(x^4)/4+5/3 x^3-5x^2-50x+1
|
extreme\:f(x)=\frac{x^{4}}{4}+\frac{5}{3}x^{3}-5x^{2}-50x+1
|
domain of f(x)= 1/(x^2-5x+6)
|
domain\:f(x)=\frac{1}{x^{2}-5x+6}
|
extreme f(x,y)= 1/2 x^2+y^3-xy
|
extreme\:f(x,y)=\frac{1}{2}x^{2}+y^{3}-xy
|
extreme f(x)=2x^2-8x+2(0.5)
|
extreme\:f(x)=2x^{2}-8x+2(0.5)
|
f(xy)=4-x^2-2y^2
|
f(xy)=4-x^{2}-2y^{2}
|
extreme f(x,y)=x^3-12x+y^2+6y+14
|
extreme\:f(x,y)=x^{3}-12x+y^{2}+6y+14
|