extreme f(x)=(x^3)/3-(x^2)/2-2x+2
|
extreme\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x+2
|
extreme s(t)=-t^2+5t+1
|
extreme\:s(t)=-t^{2}+5t+1
|
extreme f(x)=x^3+3x^4
|
extreme\:f(x)=x^{3}+3x^{4}
|
extreme f(x)=-x+49
|
extreme\:f(x)=-x+49
|
extreme f(x)=(x^3)/3-(x^2)/2-2x-9
|
extreme\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x-9
|
extreme f(x)=x^2(2x-1)^{1/3}[0.1]
|
extreme\:f(x)=x^{2}(2x-1)^{\frac{1}{3}}[0.1]
|
extreme f(x)=(sin(x)+cos(x))^2
|
extreme\:f(x)=(\sin(x)+\cos(x))^{2}
|
inverse of f(x)=sqrt(x^2-8x),x<= 0
|
inverse\:f(x)=\sqrt{x^{2}-8x},x\le\:0
|
extreme 1/3 x^3+1/2 x^2-6x+8
|
extreme\:\frac{1}{3}x^{3}+\frac{1}{2}x^{2}-6x+8
|
extreme f(x)=-4(x-1)^{4/7}+8
|
extreme\:f(x)=-4(x-1)^{\frac{4}{7}}+8
|
extreme f(x)=2x^2-4x+6
|
extreme\:f(x)=2x^{2}-4x+6
|
extreme f(x)=2x(196-x^2)
|
extreme\:f(x)=2x(196-x^{2})
|
f(x,y)=13-4x-5y
|
f(x,y)=13-4x-5y
|
extreme 7x^3-98x^2+20000x
|
extreme\:7x^{3}-98x^{2}+20000x
|
extreme f(x,y)=x^2-2x+4y-y^2
|
extreme\:f(x,y)=x^{2}-2x+4y-y^{2}
|
extreme f(x)=21-12x-(12)/x
|
extreme\:f(x)=21-12x-\frac{12}{x}
|
extreme f(x)=(2x-1)/x
|
extreme\:f(x)=\frac{2x-1}{x}
|
extreme y=(x/(x+5))
|
extreme\:y=(\frac{x}{x+5})
|
extreme f(x)=2x^2-4x-6
|
extreme\:f(x)=2x^{2}-4x-6
|
f(x,y)=2x^2+4xy
|
f(x,y)=2x^{2}+4xy
|
extreme f(x)=((9-x^2))/((2x+6))
|
extreme\:f(x)=\frac{(9-x^{2})}{(2x+6)}
|
extreme f(x)=-10xln(-11x)
|
extreme\:f(x)=-10x\ln(-11x)
|
minimum x^2-6x-6,-1<= x<= 6
|
minimum\:x^{2}-6x-6,-1\le\:x\le\:6
|
extreme (x+3)(x-3)^2
|
extreme\:(x+3)(x-3)^{2}
|
extreme x^3-6xy+y^2+15x+4
|
extreme\:x^{3}-6xy+y^{2}+15x+4
|
extreme f(x)=(1/12 x^3-1/2 x^2-12)
|
extreme\:f(x)=(\frac{1}{12}x^{3}-\frac{1}{2}x^{2}-12)
|
extreme 50-3x^2-4x+2xy-8y^2+78y
|
extreme\:50-3x^{2}-4x+2xy-8y^{2}+78y
|
inverse of f(x)=2+2/5 x
|
inverse\:f(x)=2+\frac{2}{5}x
|
extreme-3x^2+12x+120
|
extreme\:-3x^{2}+12x+120
|
extreme x^2+xy+y^2-25y+208
|
extreme\:x^{2}+xy+y^{2}-25y+208
|
extreme f(x)=2x^3+3x^2-12x+11
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+11
|
extreme f(x)=x^4+2x^3-x+x+1
|
extreme\:f(x)=x^{4}+2x^{3}-x+x+1
|
minimum f(x)=-(x^2+x)^{2/3},-2<= x<= 3
|
minimum\:f(x)=-(x^{2}+x)^{\frac{2}{3}},-2\le\:x\le\:3
|
extreme 52900+400x+x^2
|
extreme\:52900+400x+x^{2}
|
extreme f(x)=-x-4,-4<= x<= 1
|
extreme\:f(x)=-x-4,-4\le\:x\le\:1
|
extreme f(x,y)=x^2-9xy-y^2
|
extreme\:f(x,y)=x^{2}-9xy-y^{2}
|
xθ
|
xθ
|
extreme f(x)=6x^3-18x-4
|
extreme\:f(x)=6x^{3}-18x-4
|
intercepts of f(x)=(4x-12)/((x-2)^2)
|
intercepts\:f(x)=\frac{4x-12}{(x-2)^{2}}
|
extreme f(x)=2x+cot(x)
|
extreme\:f(x)=2x+\cot(x)
|
f(x,y)=e^{x+y+8}
|
f(x,y)=e^{x+y+8}
|
f(x,y)=2x^2+2xy+y^2+2x-4
|
f(x,y)=2x^{2}+2xy+y^{2}+2x-4
|
extreme f(x)=21-4x-4/x
|
extreme\:f(x)=21-4x-\frac{4}{x}
|
minimum-x^3+3x-4
|
minimum\:-x^{3}+3x-4
|
extreme y=(x^2-4)
|
extreme\:y=(x^{2}-4)
|
extreme f(x,y)=(y-x^2)*e^{-2y}
|
extreme\:f(x,y)=(y-x^{2})\cdot\:e^{-2y}
|
extreme f(x)=e^{x-y}*(x^2-2y^2)
|
extreme\:f(x)=e^{x-y}\cdot\:(x^{2}-2y^{2})
|
f(xy)=2x+3y-7
|
f(xy)=2x+3y-7
|
extreme f(x)=2x^3+3x+10
|
extreme\:f(x)=2x^{3}+3x+10
|
range of (-5x+1)/(5+6x)
|
range\:\frac{-5x+1}{5+6x}
|
extreme y=7x^4-42x^2
|
extreme\:y=7x^{4}-42x^{2}
|
extreme f(x)=6x-2x^3
|
extreme\:f(x)=6x-2x^{3}
|
extreme f(x,y)=(x^2-6x)(y^2-8y)
|
extreme\:f(x,y)=(x^{2}-6x)(y^{2}-8y)
|
extreme f(x,y)=x^2-6xy+y^2+16y+7
|
extreme\:f(x,y)=x^{2}-6xy+y^{2}+16y+7
|
extreme f(x)=14+16x-5x^2+((x^3)/3)
|
extreme\:f(x)=14+16x-5x^{2}+(\frac{x^{3}}{3})
|
extreme x^2+y^2-6x-6y+5
|
extreme\:x^{2}+y^{2}-6x-6y+5
|
minimum f(x)=x^4-8x^3+22x^2-24x+8
|
minimum\:f(x)=x^{4}-8x^{3}+22x^{2}-24x+8
|
extreme x^3-2x^2-2
|
extreme\:x^{3}-2x^{2}-2
|
extreme f(x)=168000-200x
|
extreme\:f(x)=168000-200x
|
minimum 2xy
|
minimum\:2xy
|
extreme f(x)= x/(5x+4),7<= x<= 13
|
extreme\:f(x)=\frac{x}{5x+4},7\le\:x\le\:13
|
f(x,y)=xy^2+x^2+y+4
|
f(x,y)=xy^{2}+x^{2}+y+4
|
extreme f(x)=x+3
|
extreme\:f(x)=x+3
|
extreme f(x)=x+1
|
extreme\:f(x)=x+1
|
f(xy)=xy+3x
|
f(xy)=xy+3x
|
extreme (x+1)^9-9x-2
|
extreme\:(x+1)^{9}-9x-2
|
extreme f(x)=7x^3(x+1)^2
|
extreme\:f(x)=7x^{3}(x+1)^{2}
|
extreme y=17x^4-102x^2
|
extreme\:y=17x^{4}-102x^{2}
|
extreme x^2+y-e^y
|
extreme\:x^{2}+y-e^{y}
|
domain of f(x)=(3x)/(7-2x)
|
domain\:f(x)=\frac{3x}{7-2x}
|
1-x
|
1-x
|
extreme f(x)=[24144]
|
extreme\:f(x)=[24144]
|
extreme f(x)=x^2-,1<= x<= 0
|
extreme\:f(x)=x^{2}-,1\le\:x\le\:0
|
extreme f(x)=x^4-2x^2+8,-4<= x<= 4
|
extreme\:f(x)=x^{4}-2x^{2}+8,-4\le\:x\le\:4
|
extreme 16x^4+125x
|
extreme\:16x^{4}+125x
|
f(x)=x^2+y^2-2x-6y+14
|
f(x)=x^{2}+y^{2}-2x-6y+14
|
extreme x^4+2x^{2(y-2)+9(y-1)^2}
|
extreme\:x^{4}+2x^{2(y-2)+9(y-1)^{2}}
|
extreme f(x)=x^5e^{2x}
|
extreme\:f(x)=x^{5}e^{2x}
|
extreme h(t)=-16t^2+96t+7
|
extreme\:h(t)=-16t^{2}+96t+7
|
extreme f(x,y)=4-y^3-x^2-3xy
|
extreme\:f(x,y)=4-y^{3}-x^{2}-3xy
|
range of sqrt(x-2)+5
|
range\:\sqrt{x-2}+5
|
extreme-74+30x-3x^2
|
extreme\:-74+30x-3x^{2}
|
f(x,y)=50-7x^2-2y^2
|
f(x,y)=50-7x^{2}-2y^{2}
|
extreme 4^x+1
|
extreme\:4^{x}+1
|
minimum f(x)=x+(2*1800)/x
|
minimum\:f(x)=x+\frac{2\cdot\:1800}{x}
|
extreme f(x)=4x^3-4x^2-4x+5
|
extreme\:f(x)=4x^{3}-4x^{2}-4x+5
|
extreme f(x)=4x^3-4x^2-4x+7
|
extreme\:f(x)=4x^{3}-4x^{2}-4x+7
|
minimum 3.79254…E84
|
minimum\:3.79254…E84
|
extreme y= 4/x+x
|
extreme\:y=\frac{4}{x}+x
|
extreme x*sqrt(4-x^2)
|
extreme\:x\cdot\:\sqrt{4-x^{2}}
|
extreme points of f(x)=e^x-x
|
extreme\:points\:f(x)=e^{x}-x
|
extreme f(x)=2x^2-15x^2+36x+10
|
extreme\:f(x)=2x^{2}-15x^{2}+36x+10
|
extreme (x^3)/(x^2-3)
|
extreme\:\frac{x^{3}}{x^{2}-3}
|
extreme f(x)=-7x^8+3x^2-4
|
extreme\:f(x)=-7x^{8}+3x^{2}-4
|
extreme f(x)=5x-3x^2
|
extreme\:f(x)=5x-3x^{2}
|
extreme y= x/(x^2+4),(-3,1)
|
extreme\:y=\frac{x}{x^{2}+4},(-3,1)
|
extreme f(x,y)=12x^2+48xy+8y^3-3y^4
|
extreme\:f(x,y)=12x^{2}+48xy+8y^{3}-3y^{4}
|
extreme log_{10}(x^2-1)
|
extreme\:\log_{10}(x^{2}-1)
|
extreme f(x)=3^2+5x-4
|
extreme\:f(x)=3^{2}+5x-4
|
extreme f(x)=x^3-9x^2+24x-18
|
extreme\:f(x)=x^{3}-9x^{2}+24x-18
|