Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
domain of 1/(\sqrt[4]{x^2-7x)}
domain\:\frac{1}{\sqrt[4]{x^{2}-7x}}
parallel y=-x+6,(-2,0)
parallel\:y=-x+6,(-2,0)
domain of f(x)= 1/(1-tan(x))
domain\:f(x)=\frac{1}{1-\tan(x)}
inverse of log_{10}(x+2)-3
inverse\:\log_{10}(x+2)-3
slope of f(x)= 1/2 x
slope\:f(x)=\frac{1}{2}x
extreme f(x)=x^2-2x+3
extreme\:f(x)=x^{2}-2x+3
distance (1,3),(-2,9)
distance\:(1,3),(-2,9)
intercepts of 2x^2+16x+12
intercepts\:2x^{2}+16x+12
range of f(x)=sqrt(-x^2-4x+12)
range\:f(x)=\sqrt{-x^{2}-4x+12}
symmetry y=x^2-9x
symmetry\:y=x^{2}-9x
domain of sqrt(9-t)
domain\:\sqrt{9-t}
asymptotes of f(x)=x+(17)/x
asymptotes\:f(x)=x+\frac{17}{x}
inverse of f(x)=9x+5
inverse\:f(x)=9x+5
range of x^2+6x+5
range\:x^{2}+6x+5
domain of f(x)=sqrt(4x-9)
domain\:f(x)=\sqrt{4x-9}
inverse of f(x)=log_{8}(x)
inverse\:f(x)=\log_{8}(x)
inverse of y=3+3x
inverse\:y=3+3x
critical f(x)=-2/(x^2)
critical\:f(x)=-\frac{2}{x^{2}}
critical f(x)=x^4-3x^2+6
critical\:f(x)=x^{4}-3x^{2}+6
inflection x/(x+5)
inflection\:\frac{x}{x+5}
slope ofintercept-8x+y-8=0,(2,5)
slopeintercept\:-8x+y-8=0,(2,5)
inverse of f(x)=1-2e^{-2x}
inverse\:f(x)=1-2e^{-2x}
monotone 2x^2-12x+20
monotone\:2x^{2}-12x+20
domain of f(x)=2x^2+x-4
domain\:f(x)=2x^{2}+x-4
domain of f(x)=sqrt(3+(x^2-10)/(x-2))
domain\:f(x)=\sqrt{3+\frac{x^{2}-10}{x-2}}
vertices y=x^2+2x+18
vertices\:y=x^{2}+2x+18
domain of f(x)=sqrt(x^2-6x+8)
domain\:f(x)=\sqrt{x^{2}-6x+8}
range of (2x)/(x^2+2x)
range\:\frac{2x}{x^{2}+2x}
line (4,0),(20,18)
line\:(4,0),(20,18)
inflection (3-x)e^{-x}
inflection\:(3-x)e^{-x}
range of y= 1/x
range\:y=\frac{1}{x}
inverse of f(x)=4x^3+5
inverse\:f(x)=4x^{3}+5
asymptotes of f(x)=(x+1)/(x^2+8x)
asymptotes\:f(x)=\frac{x+1}{x^{2}+8x}
inverse of f(x)=5x-9
inverse\:f(x)=5x-9
domain of (x+3)^5
domain\:(x+3)^{5}
f(θ)=sin(2θ)
f(θ)=\sin(2θ)
slope ofintercept y=-x-5
slopeintercept\:y=-x-5
\begin{pmatrix}4&-12\end{pmatrix}\begin{pmatrix}4&-1\end{pmatrix}
inverse of f(x)=5x-12
inverse\:f(x)=5x-12
y=5x+2
y=5x+2
intercepts of f(x)=x^3+x^2-4x-4
intercepts\:f(x)=x^{3}+x^{2}-4x-4
range of tan(2x)
range\:\tan(2x)
parity tan(narctan((2sqrt(r))/(1-r)))
parity\:\tan(n\arctan(\frac{2\sqrt{r}}{1-r}))
critical f(x)=4x-x^2
critical\:f(x)=4x-x^{2}
range of 1/(x^2)-4
range\:\frac{1}{x^{2}}-4
frequency cos(2000pit)
frequency\:\cos(2000πt)
inverse of f(x)=5^x-8
inverse\:f(x)=5^{x}-8
domain of f(x)=x^3+5x^2-1
domain\:f(x)=x^{3}+5x^{2}-1
critical f(x)=xsqrt(2x+1)
critical\:f(x)=x\sqrt{2x+1}
inflection f(x)=-x^4-5x^3+6x-2
inflection\:f(x)=-x^{4}-5x^{3}+6x-2
inverse of f(x)=6x^2
inverse\:f(x)=6x^{2}
domain of f(x)=ln(5x+2)
domain\:f(x)=\ln(5x+2)
parity f(x)=289
parity\:f(x)=289
inverse of y=-3x
inverse\:y=-3x
range of sqrt(5-8x)
range\:\sqrt{5-8x}
range of (4x-4)/(x+2)
range\:\frac{4x-4}{x+2}
range of f(x)=x+sqrt(x-1)
range\:f(x)=x+\sqrt{x-1}
domain of sqrt(x^2-81)
domain\:\sqrt{x^{2}-81}
critical (x^3)/3-x^2-3x
critical\:\frac{x^{3}}{3}-x^{2}-3x
parity f(x)=-x^3+4x+9
parity\:f(x)=-x^{3}+4x+9
line (-2,2),(0,0)
line\:(-2,2),(0,0)
amplitude of 2sin(4x-pi)
amplitude\:2\sin(4x-π)
inverse of f(x)=(3x+4)/(2x+2)
inverse\:f(x)=\frac{3x+4}{2x+2}
simplify (1.6)(-5.2)
simplify\:(1.6)(-5.2)
domain of-2tan(θ+pi/4)-1
domain\:-2\tan(θ+\frac{π}{4})-1
range of f(x)=2+sqrt(x+3)
range\:f(x)=2+\sqrt{x+3}
inverse of f(x)= 1/2 (3-3x)
inverse\:f(x)=\frac{1}{2}(3-3x)
inverse of f(x)= x/(32)
inverse\:f(x)=\frac{x}{32}
range of f(x)=e^{-x}-5
range\:f(x)=e^{-x}-5
domain of f(x)=(2x-1)/(x^3-4x)
domain\:f(x)=\frac{2x-1}{x^{3}-4x}
inverse of f(x)=6x-3
inverse\:f(x)=6x-3
asymptotes of f(x)= 1/(1+x)
asymptotes\:f(x)=\frac{1}{1+x}
symmetry (x^2-25)/x
symmetry\:\frac{x^{2}-25}{x}
domain of f(x)=sqrt(8-x)
domain\:f(x)=\sqrt{8-x}
asymptotes of f(x)=(x^2+2x-8)/(2x+6)
asymptotes\:f(x)=\frac{x^{2}+2x-8}{2x+6}
domain of (sqrt(x^2-3x+2))/(2x^2-x)
domain\:\frac{\sqrt{x^{2}-3x+2}}{2x^{2}-x}
y=5x-2
y=5x-2
range of 5^x-4
range\:5^{x}-4
inverse of f(x)=2ln(x+4)-8
inverse\:f(x)=2\ln(x+4)-8
range of xsqrt(36-x^2)
range\:x\sqrt{36-x^{2}}
slope ofintercept-4x-12y=24
slopeintercept\:-4x-12y=24
domain of f(x)=x^3-4x^2+5x-2
domain\:f(x)=x^{3}-4x^{2}+5x-2
extreme f(x)=(25x)/(x^2+25)
extreme\:f(x)=\frac{25x}{x^{2}+25}
domain of f(x)=(x+3)/(3x-27)+1/(x^2-4)
domain\:f(x)=\frac{x+3}{3x-27}+\frac{1}{x^{2}-4}
domain of (sqrt(10-x))/(x^2-1)
domain\:\frac{\sqrt{10-x}}{x^{2}-1}
critical f(x)=-2x-10
critical\:f(x)=-2x-10
parallel y=-3+5
parallel\:y=-3+5
asymptotes of sin(3x)
asymptotes\:\sin(3x)
inverse of f(x)=1+2x^5
inverse\:f(x)=1+2x^{5}
inflection f(x)= x/(x^2+4)
inflection\:f(x)=\frac{x}{x^{2}+4}
domain of f(x)=(x^4+3x^2+1)/(x^3+x)
domain\:f(x)=\frac{x^{4}+3x^{2}+1}{x^{3}+x}
domain of y=cos(x)
domain\:y=\cos(x)
asymptotes of f(x)=2^x+5
asymptotes\:f(x)=2^{x}+5
parity sin(2arcsin(-x/a))
parity\:\sin(2\arcsin(-\frac{x}{a}))
range of x^3-4
range\:x^{3}-4
extreme f(x)=x+(49)/x
extreme\:f(x)=x+\frac{49}{x}
asymptotes of y=6tan(0.2x)
asymptotes\:y=6\tan(0.2x)
inflection e^{-x}
inflection\:e^{-x}
domain of f(x)=7*8^{x+8}+6
domain\:f(x)=7\cdot\:8^{x+8}+6
y=x+2
y=x+2
1
..
385
386
387
388
389
..
1324