extreme f(x)= 1/5 x^5-2/3 x^3+x
|
extreme\:f(x)=\frac{1}{5}x^{5}-\frac{2}{3}x^{3}+x
|
minimum f(x)=| 1/16 x^3-4|
|
minimum\:f(x)=\left|\frac{1}{16}x^{3}-4\right|
|
extreme (sqrt(x-5))/4
|
extreme\:\frac{\sqrt{x-5}}{4}
|
extreme f(x,y)=x^2+y^2-18x+16y-7
|
extreme\:f(x,y)=x^{2}+y^{2}-18x+16y-7
|
extreme f(x)=(x-4)/(x^2-7)
|
extreme\:f(x)=\frac{x-4}{x^{2}-7}
|
intercepts of y=-2x+2
|
intercepts\:y=-2x+2
|
extreme f(x,y)=x^3-48xy+64y^3
|
extreme\:f(x,y)=x^{3}-48xy+64y^{3}
|
extreme f(x)=7x-14cos(x),-2<= x<= 0
|
extreme\:f(x)=7x-14\cos(x),-2\le\:x\le\:0
|
extreme y=(x-9)*sqrt(2x)
|
extreme\:y=(x-9)\cdot\:\sqrt{2x}
|
extreme f(x)=xy^2-y^2+1/2 x^2-5x+4
|
extreme\:f(x)=xy^{2}-y^{2}+\frac{1}{2}x^{2}-5x+4
|
extreme f(x)=\sqrt[3]{x},-27<= x<= 27
|
extreme\:f(x)=\sqrt[3]{x},-27\le\:x\le\:27
|
extreme 0.001x^2+7+(128)/x
|
extreme\:0.001x^{2}+7+\frac{128}{x}
|
extreme f(t)= 1/9 [(t^3)/3+(3t^2)/2-28t]
|
extreme\:f(t)=\frac{1}{9}[\frac{t^{3}}{3}+\frac{3t^{2}}{2}-28t]
|
F(X,Y)=X*Y
|
F(X,Y)=X\cdot\:Y
|
u(x,y)=(2-x)(y-1)+2(x-2)^2+2(y-1)^2-3
|
u(x,y)=(2-x)(y-1)+2(x-2)^{2}+2(y-1)^{2}-3
|
asymptotes of f(x)=(3x^2+5x-7)/(x^2-3)
|
asymptotes\:f(x)=\frac{3x^{2}+5x-7}{x^{2}-3}
|
extreme g(x)=x^6-2x^5+8x^4
|
extreme\:g(x)=x^{6}-2x^{5}+8x^{4}
|
extreme y= 1/3 xe^{sqrt(e)x^2}
|
extreme\:y=\frac{1}{3}xe^{\sqrt{e}x^{2}}
|
extreme f(x)=(x-4)/(x^2-9)
|
extreme\:f(x)=\frac{x-4}{x^{2}-9}
|
extreme f(x,y)=x^2-2x+6y^2+6
|
extreme\:f(x,y)=x^{2}-2x+6y^{2}+6
|
extreme 4x+6y
|
extreme\:4x+6y
|
extreme f(x)=19+28(-5)^2-2(-5)^3
|
extreme\:f(x)=19+28(-5)^{2}-2(-5)^{3}
|
extreme f(x)=3cos(2x)+3x
|
extreme\:f(x)=3\cos(2x)+3x
|
Q(x,M)=x-(((x-d))/(M/3))
|
Q(x,M)=x-(\frac{(x-d)}{\frac{M}{3}})
|
extreme (10)/(sqrt(-X+25))
|
extreme\:\frac{10}{\sqrt{-X+25}}
|
asymptotes of f(x)=(x^2-4x+3)/(x^2-1)
|
asymptotes\:f(x)=\frac{x^{2}-4x+3}{x^{2}-1}
|
extreme f(x)=2x^3-4x^6+2x^2
|
extreme\:f(x)=2x^{3}-4x^{6}+2x^{2}
|
extreme f(x)=5+2x+8x^{-1}
|
extreme\:f(x)=5+2x+8x^{-1}
|
extreme f(x)= x/(x^2+108)
|
extreme\:f(x)=\frac{x}{x^{2}+108}
|
extreme f(x)=-4x^2+96x-490
|
extreme\:f(x)=-4x^{2}+96x-490
|
extreme y=\sqrt[5]{x}
|
extreme\:y=\sqrt[5]{x}
|
extreme f(x)=4+x+x^2
|
extreme\:f(x)=4+x+x^{2}
|
extreme f(x)=ln(sin(2x))
|
extreme\:f(x)=\ln(\sin(2x))
|
minimum xy^2+8/(xy)-ln(y)
|
minimum\:xy^{2}+\frac{8}{xy}-\ln(y)
|
extreme f(x)=6x-6,-6<= x<= 3
|
extreme\:f(x)=6x-6,-6\le\:x\le\:3
|
domain of f(x)=5x-12=0
|
domain\:f(x)=5x-12=0
|
minimum f(x)=(4x)/(x^2+1)
|
minimum\:f(x)=\frac{4x}{x^{2}+1}
|
S(v,d)=4pivd+4piv^2
|
S(v,d)=4πvd+4πv^{2}
|
extreme f(x)=x+(23)/x
|
extreme\:f(x)=x+\frac{23}{x}
|
f(x,y)=7x^2-9y^2+2x+9y+6
|
f(x,y)=7x^{2}-9y^{2}+2x+9y+6
|
U(x,t)=e^{(x^2-t^2)}
|
U(x,t)=e^{(x^{2}-t^{2})}
|
f(x,y)=-6x^2+4y^2+2x+4y+8
|
f(x,y)=-6x^{2}+4y^{2}+2x+4y+8
|
f(x,y)=(x^2)/2-(y^2)/2
|
f(x,y)=\frac{x^{2}}{2}-\frac{y^{2}}{2}
|
extreme f(x,y)=2x^2+4xy+y^2+5
|
extreme\:f(x,y)=2x^{2}+4xy+y^{2}+5
|
P(x,y)=6x^2+19xy+15y^2-17y-11x+4
|
P(x,y)=6x^{2}+19xy+15y^{2}-17y-11x+4
|
extreme 5sin^2(x),0<= x<= pi
|
extreme\:5\sin^{2}(x),0\le\:x\le\:π
|
intercepts of x/(x^2+49)
|
intercepts\:\frac{x}{x^{2}+49}
|
extreme f(x)=x^3+5x^2-8x+2[-5,-2]
|
extreme\:f(x)=x^{3}+5x^{2}-8x+2[-5,-2]
|
extreme f(x)=-x^3+3x-11
|
extreme\:f(x)=-x^{3}+3x-11
|
extreme f(x)=2x^3-3x^2-4
|
extreme\:f(x)=2x^{3}-3x^{2}-4
|
extreme f(x)=-12x^3+2x^2-3
|
extreme\:f(x)=-12x^{3}+2x^{2}-3
|
extreme f(x)=x^3-2x^2-15x+10[-2]
|
extreme\:f(x)=x^{3}-2x^{2}-15x+10[-2]
|
extreme f(x,y)=x^2-y^2+xy-5x
|
extreme\:f(x,y)=x^{2}-y^{2}+xy-5x
|
extreme y= 1/2 x^2+((14-3x)/4)^2
|
extreme\:y=\frac{1}{2}x^{2}+(\frac{14-3x}{4})^{2}
|
extreme 93000x-36000
|
extreme\:93000x-36000
|
extreme f(x)=x^4-32x^2-10
|
extreme\:f(x)=x^{4}-32x^{2}-10
|
asymptotes of f(x)=(-12)/(x^2+x-6)
|
asymptotes\:f(x)=\frac{-12}{x^{2}+x-6}
|
f(x,y)=x-5y
|
f(x,y)=x-5y
|
extreme f(x)=x^4(x-5)+4
|
extreme\:f(x)=x^{4}(x-5)+4
|
extreme f(x)=x^2-(54)/x
|
extreme\:f(x)=x^{2}-\frac{54}{x}
|
extreme y= 1/9 [(t^3)/3+(3t^2)/2-28t]
|
extreme\:y=\frac{1}{9}[\frac{t^{3}}{3}+\frac{3t^{2}}{2}-28t]
|
extreme 2x^3+3x^2-36x+3,-3<= x<= 6
|
extreme\:2x^{3}+3x^{2}-36x+3,-3\le\:x\le\:6
|
extreme x^2+6x+3
|
extreme\:x^{2}+6x+3
|
extreme f(x)=2+4x^2-x^4
|
extreme\:f(x)=2+4x^{2}-x^{4}
|
extreme (2x+8)/(x^2+8)
|
extreme\:\frac{2x+8}{x^{2}+8}
|
extreme g(t)=-5t^2-3t+2
|
extreme\:g(t)=-5t^{2}-3t+2
|
extreme 2x+|x^2-4x+3|
|
extreme\:2x+\left|x^{2}-4x+3\right|
|
asymptotes of f(x)=(2+x^4)/(x^2-x^4)
|
asymptotes\:f(x)=\frac{2+x^{4}}{x^{2}-x^{4}}
|
frequency cos(5x)
|
frequency\:\cos(5x)
|
f(t)=2sqrt(t)-3x^2
|
f(t)=2\sqrt{t}-3x^{2}
|
extreme C(x)=0.6x^2-96x+13223
|
extreme\:C(x)=0.6x^{2}-96x+13223
|
extreme f(x)=2x^3-3x^2-6
|
extreme\:f(x)=2x^{3}-3x^{2}-6
|
extreme f(x)=((x^3))/((x-1)^2)
|
extreme\:f(x)=\frac{(x^{3})}{(x-1)^{2}}
|
extreme y=(2x^2)/(x-6)[-3]
|
extreme\:y=\frac{2x^{2}}{x-6}[-3]
|
f(x,y)=x-2y
|
f(x,y)=x-2y
|
minimum f(t)=\sqrt[3]{t}(8-y)
|
minimum\:f(t)=\sqrt[3]{t}(8-y)
|
extreme 3x+1[3.6]
|
extreme\:3x+1[3.6]
|
inverse of y= x/(x+4)
|
inverse\:y=\frac{x}{x+4}
|
extreme f(x)=(9x)/(sqrt(x-4)),6<= x<= 12
|
extreme\:f(x)=\frac{9x}{\sqrt{x-4}},6\le\:x\le\:12
|
extreme f(x)=3x^4-8x^3+6x^2+1
|
extreme\:f(x)=3x^{4}-8x^{3}+6x^{2}+1
|
extreme f(x)=3x^4-8x^3+6x^2+2
|
extreme\:f(x)=3x^{4}-8x^{3}+6x^{2}+2
|
extreme (x^2-1)/(x^2-9)
|
extreme\:\frac{x^{2}-1}{x^{2}-9}
|
extreme f(x)=-x^3+2x^2+3x+1
|
extreme\:f(x)=-x^{3}+2x^{2}+3x+1
|
extreme x^2+6x-4
|
extreme\:x^{2}+6x-4
|
minimum x^2+xy+y^2-19y+120
|
minimum\:x^{2}+xy+y^{2}-19y+120
|
extreme g(t)=8t-t^4,-2<= t<= 1
|
extreme\:g(t)=8t-t^{4},-2\le\:t\le\:1
|
range of f(x)=cos(5x)
|
range\:f(x)=\cos(5x)
|
extreme f(x)=-0.03x^2+380x-100000
|
extreme\:f(x)=-0.03x^{2}+380x-100000
|
f(x,y)=x^2+2x+y^2-2y
|
f(x,y)=x^{2}+2x+y^{2}-2y
|
f(x)=xy-x-2
|
f(x)=xy-x-2
|
f(x,y)=xey^2+yln(x)
|
f(x,y)=xey^{2}+y\ln(x)
|
extreme y=-x^2-x-5
|
extreme\:y=-x^{2}-x-5
|
extreme f(x)=3x^4-8x^3+6x^2-9
|
extreme\:f(x)=3x^{4}-8x^{3}+6x^{2}-9
|
f(x,y)=7x^2y+9xy^2
|
f(x,y)=7x^{2}y+9xy^{2}
|
extreme-4x^3+200x^2-3000x+17000
|
extreme\:-4x^{3}+200x^{2}-3000x+17000
|
extreme f(x)=-x+10
|
extreme\:f(x)=-x+10
|
extreme f(x)=-5t^2+61t+18
|
extreme\:f(x)=-5t^{2}+61t+18
|
distance (sqrt(98),9)(sqrt(2),-9,)
|
distance\:(\sqrt{98},9)(\sqrt{2},-9,)
|
extreme f(x,y)=x^2+y^2-30
|
extreme\:f(x,y)=x^{2}+y^{2}-30
|
extreme f(x)=(x^3)/3-(x^2)/2-2x+1
|
extreme\:f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2x+1
|