extreme f(x)=4x-3x^2+1
|
extreme\:f(x)=4x-3x^{2}+1
|
g(x,y)=(x^2-1)(e^y-1)+(y^2-2y+2)e^y
|
g(x,y)=(x^{2}-1)(e^{y}-1)+(y^{2}-2y+2)e^{y}
|
minimum y=(x+7)(x+3)
|
minimum\:y=(x+7)(x+3)
|
extreme f(x)=-3x^2+2x-4,1<= x<= 4
|
extreme\:f(x)=-3x^{2}+2x-4,1\le\:x\le\:4
|
extreme R(M)=M^2(1/2-M/3)
|
extreme\:R(M)=M^{2}(\frac{1}{2}-\frac{M}{3})
|
extreme f(x)=8x^4-5x^3+x^2-2x+3
|
extreme\:f(x)=8x^{4}-5x^{3}+x^{2}-2x+3
|
f(x,y)=sqrt(400-81x^2-81y^2)
|
f(x,y)=\sqrt{400-81x^{2}-81y^{2}}
|
extreme f(x)= 1/2 (x-2)^{-1/2}
|
extreme\:f(x)=\frac{1}{2}(x-2)^{-\frac{1}{2}}
|
extreme x^4+2x^2
|
extreme\:x^{4}+2x^{2}
|
extreme f(x)= x/(x^2+25),-7<= x<= 7
|
extreme\:f(x)=\frac{x}{x^{2}+25},-7\le\:x\le\:7
|
extreme f(x)=4x^2+(3000)/x
|
extreme\:f(x)=4x^{2}+\frac{3000}{x}
|
midpoint (9,15)(-1,-7)
|
midpoint\:(9,15)(-1,-7)
|
extreme f(x)=-3x^2-y^2+2xy-3x-y
|
extreme\:f(x)=-3x^{2}-y^{2}+2xy-3x-y
|
f(x,y)=x^3+8y^3-12xy
|
f(x,y)=x^{3}+8y^{3}-12xy
|
extreme f(x)=4xe^{-4x+1}
|
extreme\:f(x)=4xe^{-4x+1}
|
extreme f(x)=((x^2-9x+50))/(x-7)
|
extreme\:f(x)=\frac{(x^{2}-9x+50)}{x-7}
|
extreme f(x)=x^4-32x+9
|
extreme\:f(x)=x^{4}-32x+9
|
extreme f(x)=-6x^2-12x-9,-3<= x<= 2
|
extreme\:f(x)=-6x^{2}-12x-9,-3\le\:x\le\:2
|
extreme f(x)=(1/2 x)+3
|
extreme\:f(x)=(\frac{1}{2}x)+3
|
extreme f(x)=((x^2-2x+3))/(x-2)
|
extreme\:f(x)=\frac{(x^{2}-2x+3)}{x-2}
|
extreme f(x)=(x^2+2)e^{-2x}
|
extreme\:f(x)=(x^{2}+2)e^{-2x}
|
extreme f(x)=-25x^2-30y^2+500x+300y+150
|
extreme\:f(x)=-25x^{2}-30y^{2}+500x+300y+150
|
range of f(x)=(5x+4)/7
|
range\:f(x)=\frac{5x+4}{7}
|
extreme f(x,y)=-y^3+yx^2-2y^2x^2+2x^4
|
extreme\:f(x,y)=-y^{3}+yx^{2}-2y^{2}x^{2}+2x^{4}
|
extreme f(x)=e^{7x^2+y^2+1}
|
extreme\:f(x)=e^{7x^{2}+y^{2}+1}
|
P(X,y)=36X^2-9y^2
|
P(X,y)=36X^{2}-9y^{2}
|
5/(-5ex^2-sqrt(5)y^2+5)
|
\frac{5}{-5ex^{2}-\sqrt{5}y^{2}+5}
|
extreme f(x)=x^3-y^3+6xy
|
extreme\:f(x)=x^{3}-y^{3}+6xy
|
extreme f(x)=6+x^2+4x+y^2
|
extreme\:f(x)=6+x^{2}+4x+y^{2}
|
f(x,y)=x^2+y^2+4x-2y+4
|
f(x,y)=x^{2}+y^{2}+4x-2y+4
|
f(x,y)=xy+(50)/x+(20)/y
|
f(x,y)=xy+\frac{50}{x}+\frac{20}{y}
|
f(x,y)=sqrt(49-9x^2-y^2)
|
f(x,y)=\sqrt{49-9x^{2}-y^{2}}
|
extreme y=X^2(X-3)
|
extreme\:y=X^{2}(X-3)
|
inflection points of f(x)=x^4+3x^3
|
inflection\:points\:f(x)=x^{4}+3x^{3}
|
extreme f(x)=(3x-2)^5
|
extreme\:f(x)=(3x-2)^{5}
|
extreme f(x)=x^3-3x+y^2-4y
|
extreme\:f(x)=x^{3}-3x+y^{2}-4y
|
extreme f(x)=(x^2+13)^{1/3}
|
extreme\:f(x)=(x^{2}+13)^{\frac{1}{3}}
|
extreme f(x)= x/(x-2),4<= x<= 6
|
extreme\:f(x)=\frac{x}{x-2},4\le\:x\le\:6
|
extreme x/(x^2-16)
|
extreme\:\frac{x}{x^{2}-16}
|
extreme f(x)=4sin(2x)
|
extreme\:f(x)=4\sin(2x)
|
extreme f(x)=((2x^2+x-3))/((3x-9))
|
extreme\:f(x)=\frac{(2x^{2}+x-3)}{(3x-9)}
|
extreme f(x,y)=x^2-y^2-20x+2y+8
|
extreme\:f(x,y)=x^{2}-y^{2}-20x+2y+8
|
extreme f(x,y)=(xy)/(x^2+1)
|
extreme\:f(x,y)=\frac{xy}{x^{2}+1}
|
extreme x^4+2x^3+1
|
extreme\:x^{4}+2x^{3}+1
|
domain of =2x^2-20x-6
|
domain\:=2x^{2}-20x-6
|
f(x,y)=x^2+3y^2-2xy+10x-2y+4
|
f(x,y)=x^{2}+3y^{2}-2xy+10x-2y+4
|
extreme (-x*e^{-x})
|
extreme\:(-x\cdot\:e^{-x})
|
extreme (7x)/(x^2-49)
|
extreme\:\frac{7x}{x^{2}-49}
|
extreme f(x,y)=5x_{6y}
|
extreme\:f(x,y)=5x_{6y}
|
extreme 10+x^3-(9x^2)/2
|
extreme\:10+x^{3}-\frac{9x^{2}}{2}
|
extreme 1/(x^2-5x-24)
|
extreme\:\frac{1}{x^{2}-5x-24}
|
extreme f(x)=x^3+4x^2+x-6
|
extreme\:f(x)=x^{3}+4x^{2}+x-6
|
extreme f(x)=(x-3)^2(x+2)
|
extreme\:f(x)=(x-3)^{2}(x+2)
|
extreme f(x)=(6(x-7)^2)/(x+9)
|
extreme\:f(x)=\frac{6(x-7)^{2}}{x+9}
|
extreme f(x)=-y-y^3
|
extreme\:f(x)=-y-y^{3}
|
midpoint (3.5,2.2)(1.5,-4.8)
|
midpoint\:(3.5,2.2)(1.5,-4.8)
|
f(y)=x^3y^2-2x^2y+3x
|
f(y)=x^{3}y^{2}-2x^{2}y+3x
|
extreme f(x)=((x^9))/(e^{2x)}
|
extreme\:f(x)=\frac{(x^{9})}{e^{2x}}
|
f(x,y)=x^2-y^2+21
|
f(x,y)=x^{2}-y^{2}+21
|
extreme-(5e^{4x})/(x-4)
|
extreme\:-\frac{5e^{4x}}{x-4}
|
f(x,y)=x-ky
|
f(x,y)=x-ky
|
extreme f(x)=(x+3)/(x^2-2x-15)
|
extreme\:f(x)=\frac{x+3}{x^{2}-2x-15}
|
extreme f(x)=x^2(e^{-x^2})
|
extreme\:f(x)=x^{2}(e^{-x^{2}})
|
Z(p,q)=p^2+q^2
|
Z(p,q)=p^{2}+q^{2}
|
extreme f(x)=x^3+4x^2+10
|
extreme\:f(x)=x^{3}+4x^{2}+10
|
extreme f(x)=x^3+6x^2-x-6
|
extreme\:f(x)=x^{3}+6x^{2}-x-6
|
asymptotes of f(x)=-2
|
asymptotes\:f(x)=-2
|
minimum (810+100x+0.1x^2)/x
|
minimum\:\frac{810+100x+0.1x^{2}}{x}
|
extreme y=(x^2-3)/(x-2)
|
extreme\:y=\frac{x^{2}-3}{x-2}
|
extreme 6+2x-2x^2
|
extreme\:6+2x-2x^{2}
|
extreme f(x)=-3-x+x^2
|
extreme\:f(x)=-3-x+x^{2}
|
extreme f(x)=(3x^2-x^3)^{1/3}
|
extreme\:f(x)=(3x^{2}-x^{3})^{\frac{1}{3}}
|
extreme x^2-2x-15
|
extreme\:x^{2}-2x-15
|
extreme f(x)=xln(x/3)
|
extreme\:f(x)=x\ln(\frac{x}{3})
|
extreme x^2-2x-18
|
extreme\:x^{2}-2x-18
|
F(x,y)=200x+150y
|
F(x,y)=200x+150y
|
extreme f(x)=|x+1|
|
extreme\:f(x)=\left|x+1\right|
|
slope of y-1= 1/5 (x+1)
|
slope\:y-1=\frac{1}{5}(x+1)
|
domain of sqrt(3x-4)
|
domain\:\sqrt{3x-4}
|
extreme 1/(sqrt(2pi))e^{-(x^2)/2}
|
extreme\:\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}}
|
extreme-x^4+x^3+2x^2+11,0<= x<= 2
|
extreme\:-x^{4}+x^{3}+2x^{2}+11,0\le\:x\le\:2
|
extreme f(x)= 1/3 x^3-x^2+4
|
extreme\:f(x)=\frac{1}{3}x^{3}-x^{2}+4
|
f(x,y)=e^{15xy}
|
f(x,y)=e^{15xy}
|
extreme f(x)=9x^2+3[-1.2]
|
extreme\:f(x)=9x^{2}+3[-1.2]
|
extreme f(x)=-2x^3-13
|
extreme\:f(x)=-2x^{3}-13
|
extreme f(x)=9-4x-3x^2,-2<= x<= 1
|
extreme\:f(x)=9-4x-3x^{2},-2\le\:x\le\:1
|
extreme f(x)=3x^2+12x-9
|
extreme\:f(x)=3x^{2}+12x-9
|
asymptotes of f(x)=(5x)/(sqrt(9x^2+4))
|
asymptotes\:f(x)=\frac{5x}{\sqrt{9x^{2}+4}}
|
extreme f(x)=395x^2-3160x^3
|
extreme\:f(x)=395x^{2}-3160x^{3}
|
extreme e^{x-1}
|
extreme\:e^{x-1}
|
minimum f(x)=e^{3x}(3-x)
|
minimum\:f(x)=e^{3x}(3-x)
|
extreme (8x^3)/3+15x^2-8x,-5<= x<= 1
|
extreme\:\frac{8x^{3}}{3}+15x^{2}-8x,-5\le\:x\le\:1
|
extreme f(x)=2x^3-4x-1
|
extreme\:f(x)=2x^{3}-4x-1
|
extreme ln(-x^3+3x^2+72x+1)
|
extreme\:\ln(-x^{3}+3x^{2}+72x+1)
|
extreme y=0.25t^4-4.5t^2
|
extreme\:y=0.25t^{4}-4.5t^{2}
|
y=10x-11z
|
y=10x-11z
|
minimum f(x)=3x^2+12x+7/8
|
minimum\:f(x)=3x^{2}+12x+\frac{7}{8}
|
extreme f(x)=(x^3-64)^4
|
extreme\:f(x)=(x^{3}-64)^{4}
|
critical points of y=2x^3+x^2-13x+6
|
critical\:points\:y=2x^{3}+x^{2}-13x+6
|
f(x,y)=7x^2+7xy+10y^2+7xy^2+4x^2y
|
f(x,y)=7x^{2}+7xy+10y^{2}+7xy^{2}+4x^{2}y
|