extreme 3/(sqrt(x))-1
|
extreme\:\frac{3}{\sqrt{x}}-1
|
extreme (2x)/(9-x^2)
|
extreme\:\frac{2x}{9-x^{2}}
|
extreme y(θ)=tan^2(θ)-1,-pi/2 <θ< pi/2
|
extreme\:y(θ)=\tan^{2}(θ)-1,-\frac{π}{2}<θ<\frac{π}{2}
|
extreme f(x)=17+2x-x^2,0<= x<= 5
|
extreme\:f(x)=17+2x-x^{2},0\le\:x\le\:5
|
extreme f(x)=3x^2-36x+24
|
extreme\:f(x)=3x^{2}-36x+24
|
extreme f(x)=9x^2-3y^2
|
extreme\:f(x)=9x^{2}-3y^{2}
|
extreme f(x)=25x-50sin(x),(-pi/4 , pi/2)
|
extreme\:f(x)=25x-50\sin(x),(-\frac{π}{4},\frac{π}{2})
|
f(x,y)=-6x^2+5y^2+12x-20y-18
|
f(x,y)=-6x^{2}+5y^{2}+12x-20y-18
|
slope of y+5=-1/4 (x-3)
|
slope\:y+5=-\frac{1}{4}(x-3)
|
extreme sqrt(x)-x
|
extreme\:\sqrt{x}-x
|
extreme f(t)=135t-5t^3,-4<= t<= infinity
|
extreme\:f(t)=135t-5t^{3},-4\le\:t\le\:\infty\:
|
extreme f(x)=2x^3-4x+4
|
extreme\:f(x)=2x^{3}-4x+4
|
minimum P(x,y)=2x+y
|
minimum\:P(x,y)=2x+y
|
extreme y=(5280)/(pix^2)-4/3 x
|
extreme\:y=\frac{5280}{πx^{2}}-\frac{4}{3}x
|
extreme x^3-6x^2-15x+2
|
extreme\:x^{3}-6x^{2}-15x+2
|
extreme x^3-6x^2-15x+4
|
extreme\:x^{3}-6x^{2}-15x+4
|
extreme x^3-6x^2-15x+6
|
extreme\:x^{3}-6x^{2}-15x+6
|
extreme f(x,y)=x^2+2y^2+3x+10
|
extreme\:f(x,y)=x^{2}+2y^{2}+3x+10
|
extreme x^4-128x^2+9
|
extreme\:x^{4}-128x^{2}+9
|
asymptotes of f(x)=(3x-4)/(5-8x)
|
asymptotes\:f(x)=\frac{3x-4}{5-8x}
|
extreme f(x)=2x^3-33x^2+144x+3,(4,9)
|
extreme\:f(x)=2x^{3}-33x^{2}+144x+3,(4,9)
|
minimum 4-5x^2
|
minimum\:4-5x^{2}
|
extreme h(x)=x^3+12x
|
extreme\:h(x)=x^{3}+12x
|
extreme f(x)=-3x^2+2y^2+4xy
|
extreme\:f(x)=-3x^{2}+2y^{2}+4xy
|
extreme f(x)=ln(x^2+3x+9),-2<= x<= 2
|
extreme\:f(x)=\ln(x^{2}+3x+9),-2\le\:x\le\:2
|
extreme 1/(3x+6)
|
extreme\:\frac{1}{3x+6}
|
minimum (x-2)^2+1
|
minimum\:(x-2)^{2}+1
|
intercepts of y=x^2+3x-54
|
intercepts\:y=x^{2}+3x-54
|
f(x,y)=x^2+5y^2-4xy+2
|
f(x,y)=x^{2}+5y^{2}-4xy+2
|
minimum x^2+8x-9
|
minimum\:x^{2}+8x-9
|
f(x,y)=-2x^2y+2xy^2
|
f(x,y)=-2x^{2}y+2xy^{2}
|
extreme 5xln(x)
|
extreme\:5x\ln(x)
|
extreme f(x)=2e^{-x}(x^2-x+1)
|
extreme\:f(x)=2e^{-x}(x^{2}-x+1)
|
extreme x/(x^2-49)
|
extreme\:\frac{x}{x^{2}-49}
|
extreme (3+x)/(x-2)
|
extreme\:\frac{3+x}{x-2}
|
extreme y=(x+2)/(x^2)
|
extreme\:y=\frac{x+2}{x^{2}}
|
minimum 200
|
minimum\:200
|
extreme f(x)=33e^{-6x}-30e^{-5x}
|
extreme\:f(x)=33e^{-6x}-30e^{-5x}
|
inverse of f(x)=(sqrt(x))
|
inverse\:f(x)=(\sqrt{x})
|
extreme f(x)=1617x-0.11x^3
|
extreme\:f(x)=1617x-0.11x^{3}
|
extreme f(x)=x^{(6)}-x^{(3)}+3
|
extreme\:f(x)=x^{(6)}-x^{(3)}+3
|
extreme f(x)=5-6x-4x^2
|
extreme\:f(x)=5-6x-4x^{2}
|
extreme f(x)=0.002x^3+9x+7626
|
extreme\:f(x)=0.002x^{3}+9x+7626
|
f(x,y)=sqrt((1-xy))
|
f(x,y)=\sqrt{(1-xy)}
|
extreme f(x)=x^3-15x^2+27x-8
|
extreme\:f(x)=x^{3}-15x^{2}+27x-8
|
extreme f(x)=2x+37x^{2/37}
|
extreme\:f(x)=2x+37x^{\frac{2}{37}}
|
extreme f(x,y)=11-7x+9y
|
extreme\:f(x,y)=11-7x+9y
|
extreme f(x)=y=9x^2
|
extreme\:f(x)=y=9x^{2}
|
asymptotes of f(x)=(x+3)/(x-2)
|
asymptotes\:f(x)=\frac{x+3}{x-2}
|
minimum x-ln(x)
|
minimum\:x-\ln(x)
|
extreme f(x)=x^3-17x^2-24x
|
extreme\:f(x)=x^{3}-17x^{2}-24x
|
extreme y=(x^2-x-2)/(x-2)
|
extreme\:y=\frac{x^{2}-x-2}{x-2}
|
extreme 300x^2-1200x^3
|
extreme\:300x^{2}-1200x^{3}
|
extreme f(x)=x^3-3x^2+4x-1
|
extreme\:f(x)=x^{3}-3x^{2}+4x-1
|
extreme (4x-3)/(x+7)
|
extreme\:\frac{4x-3}{x+7}
|
extreme f(x)=(2x^3)/3-x^2-12x
|
extreme\:f(x)=\frac{2x^{3}}{3}-x^{2}-12x
|
extreme f(x)=x^4+6x^3+24x^2+8x+1
|
extreme\:f(x)=x^{4}+6x^{3}+24x^{2}+8x+1
|
f(x)=3x^2-3y^2
|
f(x)=3x^{2}-3y^{2}
|
perpendicular 2x+3y=7,\at (4,3)
|
perpendicular\:2x+3y=7,\at\:(4,3)
|
extreme f(x,y)=x^4-8x^3+22x^2-24x
|
extreme\:f(x,y)=x^{4}-8x^{3}+22x^{2}-24x
|
extreme f(x,y)=-4x^2y+4xy^2
|
extreme\:f(x,y)=-4x^{2}y+4xy^{2}
|
extreme f(x,y)=x^2+y^3-300x-75y-3
|
extreme\:f(x,y)=x^{2}+y^{3}-300x-75y-3
|
extreme 0.285x^2-2.28x+7.6
|
extreme\:0.285x^{2}-2.28x+7.6
|
extreme f(x)=xln(x/4)
|
extreme\:f(x)=x\ln(\frac{x}{4})
|
extreme x^{4-50x^2}
|
extreme\:x^{4-50x^{2}}
|
extreme-0.06x^2-0.02y^2-1.5xy+85x+69y
|
extreme\:-0.06x^{2}-0.02y^{2}-1.5xy+85x+69y
|
extreme f(x,y)=x^2+xy+4x+4y-3
|
extreme\:f(x,y)=x^{2}+xy+4x+4y-3
|
minimum-8atx=5
|
minimum\:-8atx=5
|
asymptotes of f(x)=(x+2)/(x^2+5x+6)
|
asymptotes\:f(x)=\frac{x+2}{x^{2}+5x+6}
|
extreme f(x)=1-7x^2,-3<= x<= 1
|
extreme\:f(x)=1-7x^{2},-3\le\:x\le\:1
|
f(x,y)=e^{x*y}+1
|
f(x,y)=e^{x\cdot\:y}+1
|
extreme x^2+y^2-12x+14y-6
|
extreme\:x^{2}+y^{2}-12x+14y-6
|
extreme f(x)=2sqrt(n)
|
extreme\:f(x)=2\sqrt{n}
|
minimum (0.002x^3+9x+7626)/x
|
minimum\:\frac{0.002x^{3}+9x+7626}{x}
|
extreme 3x^4-4x^3+6
|
extreme\:3x^{4}-4x^{3}+6
|
extreme x^{-2}-13x^{-1}
|
extreme\:x^{-2}-13x^{-1}
|
p\Rightarrow q
|
p\Rightarrow\:q
|
extreme f(x)=4x-24sqrt(x-4)
|
extreme\:f(x)=4x-24\sqrt{x-4}
|
asymptotes of f(x)=2sec(1/2 x)
|
asymptotes\:f(x)=2\sec(\frac{1}{2}x)
|
domain of f(x)=sqrt(x+5)-4
|
domain\:f(x)=\sqrt{x+5}-4
|
extreme f(x)=[|x|]
|
extreme\:f(x)=[\left|x\right|]
|
extreme x^3-12x-3
|
extreme\:x^{3}-12x-3
|
extreme f(x)=e^xx+2,0<= x<= 6
|
extreme\:f(x)=e^{x}x+2,0\le\:x\le\:6
|
minimum f(x)=x^{-2}ln(x)
|
minimum\:f(x)=x^{-2}\ln(x)
|
extreme y=(27x^2)/((2-x)^3)
|
extreme\:y=\frac{27x^{2}}{(2-x)^{3}}
|
f(x,y)=6x+6y+2xy-5x^2-2y^2
|
f(x,y)=6x+6y+2xy-5x^{2}-2y^{2}
|
extreme f(x)2x^2-4x-1
|
extreme\:f(x)2x^{2}-4x-1
|
extreme 5cos^2(x),0<= x<= pi
|
extreme\:5\cos^{2}(x),0\le\:x\le\:π
|
extreme y=x^3-6x^2+15
|
extreme\:y=x^{3}-6x^{2}+15
|
symmetry x^2+2x+2
|
symmetry\:x^{2}+2x+2
|
extreme f(x)=((x^2-1)/((5-x^2)^{0.5)})
|
extreme\:f(x)=(\frac{x^{2}-1}{(5-x^{2})^{0.5}})
|
extreme f(x)=2x^3+9x^2-60x+1
|
extreme\:f(x)=2x^{3}+9x^{2}-60x+1
|
extreme f(x)=2x^3+9x^2-60x+8
|
extreme\:f(x)=2x^{3}+9x^{2}-60x+8
|
extreme y=x^{4/7}(x^2-2)
|
extreme\:y=x^{\frac{4}{7}}(x^{2}-2)
|
extreme f(θ)=2θ-3sin(θ),0<= θ<= pi
|
extreme\:f(θ)=2θ-3\sin(θ),0\le\:θ\le\:π
|
extreme f(x)=x(x-3)^2(x+1)^4
|
extreme\:f(x)=x(x-3)^{2}(x+1)^{4}
|
minimum x^3-12x^2+45x+6
|
minimum\:x^{3}-12x^{2}+45x+6
|
extreme h(x)=4-3x^2,(-2,1)
|
extreme\:h(x)=4-3x^{2},(-2,1)
|
extreme f(x)=-5+5x-x^2
|
extreme\:f(x)=-5+5x-x^{2}
|
inverse of 2sin(2x)+3
|
inverse\:2\sin(2x)+3
|