extreme f(x)=x^2-16x,-4<= x<= 4
|
extreme\:f(x)=x^{2}-16x,-4\le\:x\le\:4
|
extreme f(x)=e^x(x+4)
|
extreme\:f(x)=e^{x}(x+4)
|
extreme f(x)=(x-4)(x+1)(x+4)
|
extreme\:f(x)=(x-4)(x+1)(x+4)
|
extreme f(x)=e^x(x+3)
|
extreme\:f(x)=e^{x}(x+3)
|
range of 1+3.22ln(34)
|
range\:1+3.22\ln(34)
|
extreme e^x(x+3)
|
extreme\:e^{x}(x+3)
|
extreme 2((256)/x+x)
|
extreme\:2(\frac{256}{x}+x)
|
extreme f(x)=sqrt(t)(1-t),t>0
|
extreme\:f(x)=\sqrt{t}(1-t),t>0
|
extreme f(x,y)=e^xy+3x^2y-y
|
extreme\:f(x,y)=e^{x}y+3x^{2}y-y
|
extreme f(x)=y=2(x^2-7x+10)
|
extreme\:f(x)=y=2(x^{2}-7x+10)
|
extreme (3-x^2)/2
|
extreme\:\frac{3-x^{2}}{2}
|
extreme y=sin(3x)
|
extreme\:y=\sin(3x)
|
extreme f(x)=e^{4x^2+y^2+3}
|
extreme\:f(x)=e^{4x^{2}+y^{2}+3}
|
extreme f(x)=(x^3)/3-2x^2-5x-2
|
extreme\:f(x)=\frac{x^{3}}{3}-2x^{2}-5x-2
|
extreme points of f(x)=2x^3-x^2-4x+10
|
extreme\:points\:f(x)=2x^{3}-x^{2}-4x+10
|
extreme x/(x^2-64)
|
extreme\:\frac{x}{x^{2}-64}
|
extreme f(x)=2ln(x)+ln(y)-4x-y
|
extreme\:f(x)=2\ln(x)+\ln(y)-4x-y
|
extreme f(x)=(x^3)/3+(x^2)/2-2x+8
|
extreme\:f(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2x+8
|
extreme f(x)=-3x^2+7x-y^2+4y+7
|
extreme\:f(x)=-3x^{2}+7x-y^{2}+4y+7
|
extreme f(x)=20e^{-0.1*10}
|
extreme\:f(x)=20e^{-0.1\cdot\:10}
|
extreme f(x)=|xy|
|
extreme\:f(x)=\left|xy\right|
|
extreme f(x)=-2x^2+12-25
|
extreme\:f(x)=-2x^{2}+12-25
|
extreme f(x)=(2-x)/(2x^2+5x-3)
|
extreme\:f(x)=\frac{2-x}{2x^{2}+5x-3}
|
extreme f(x)=(x+7)^4
|
extreme\:f(x)=(x+7)^{4}
|
domain of f(x)=sqrt((x+1)/(x-1))
|
domain\:f(x)=\sqrt{\frac{x+1}{x-1}}
|
extreme f(x)=(-4x)/(x^2+3)
|
extreme\:f(x)=\frac{-4x}{x^{2}+3}
|
extreme f(x)=3x^4-2
|
extreme\:f(x)=3x^{4}-2
|
extreme x\sqrt[3]{x^2-9}
|
extreme\:x\sqrt[3]{x^{2}-9}
|
extreme f(x)=cos(pix),0<= x<= 2/3
|
extreme\:f(x)=\cos(πx),0\le\:x\le\:\frac{2}{3}
|
extreme y=2x^2-16ln(x)
|
extreme\:y=2x^{2}-16\ln(x)
|
extreme f(x)=x^3+x^2+8x+6
|
extreme\:f(x)=x^{3}+x^{2}+8x+6
|
extreme y=(x^2)/(x^2+147)
|
extreme\:y=\frac{x^{2}}{x^{2}+147}
|
extreme f(x)=-12x^5-75x^4+100x^3-6
|
extreme\:f(x)=-12x^{5}-75x^{4}+100x^{3}-6
|
extreme f(x)=a+(ln(x))^2
|
extreme\:f(x)=a+(\ln(x))^{2}
|
extreme 5a-3
|
extreme\:5a-3
|
minimum x^2+xy+y^2-28y+261
|
minimum\:x^{2}+xy+y^{2}-28y+261
|
extreme f(x)=2x-13ln(4x)
|
extreme\:f(x)=2x-13\ln(4x)
|
extreme f(x)=(x^{5/3})/(2+x),-1<= x<= 8
|
extreme\:f(x)=\frac{x^{\frac{5}{3}}}{2+x},-1\le\:x\le\:8
|
f(x,y)=x^2=xy+y^2-16y+85
|
f(x,y)=x^{2}=xy+y^{2}-16y+85
|
extreme 1.3^x
|
extreme\:1.3^{x}
|
extreme f(x)=x^3-2x^2-15x+5,-2<= x<= 0
|
extreme\:f(x)=x^{3}-2x^{2}-15x+5,-2\le\:x\le\:0
|
extreme x^2(x-18)+96x+2000
|
extreme\:x^{2}(x-18)+96x+2000
|
f(x,y)=ysqrt(x)+4xy+2y+12
|
f(x,y)=y\sqrt{x}+4xy+2y+12
|
extreme f(x)=-20x^2-70x+120
|
extreme\:f(x)=-20x^{2}-70x+120
|
extreme points of 43x^3-48x
|
extreme\:points\:43x^{3}-48x
|
extreme x/(e^x)
|
extreme\:\frac{x}{e^{x}}
|
extreme f(x)=(x^8)/(e^{7x)}
|
extreme\:f(x)=\frac{x^{8}}{e^{7x}}
|
extreme-5/(1+x^2)
|
extreme\:-\frac{5}{1+x^{2}}
|
f(x,y)=4xy^2+2xy-3y
|
f(x,y)=4xy^{2}+2xy-3y
|
minimum f(x)=xe^{-2x}
|
minimum\:f(x)=xe^{-2x}
|
extreme f(x)=-1/6 x^3+3/2 x^2+5/2 x-11/6
|
extreme\:f(x)=-\frac{1}{6}x^{3}+\frac{3}{2}x^{2}+\frac{5}{2}x-\frac{11}{6}
|
f(x)=3x-t
|
f(x)=3x-t
|
extreme f(x)=-4x^{5/3}+7\sqrt[3]{x}
|
extreme\:f(x)=-4x^{\frac{5}{3}}+7\sqrt[3]{x}
|
f(x,y)=3x-4y+5(1,1)
|
f(x,y)=3x-4y+5(1,1)
|
extreme f(x)=(x-5)^2(x+5)
|
extreme\:f(x)=(x-5)^{2}(x+5)
|
inflection points of (3e^x)/((3+e^x)^2)
|
inflection\:points\:\frac{3e^{x}}{(3+e^{x})^{2}}
|
f(x,y)=(x^2+y^2)/(x^2y)
|
f(x,y)=\frac{x^{2}+y^{2}}{x^{2}y}
|
f(x,y)=2x^2-xy+6y^2
|
f(x,y)=2x^{2}-xy+6y^{2}
|
extreme f(x)=(x^3-3x^2+4)
|
extreme\:f(x)=(x^{3}-3x^{2}+4)
|
extreme f(x)=x-sin(-x),0<= x<= 2pi
|
extreme\:f(x)=x-\sin(-x),0\le\:x\le\:2π
|
extreme f(x)=((x^4+1))/(x^2)
|
extreme\:f(x)=\frac{(x^{4}+1)}{x^{2}}
|
extreme f(x)=x^{1/5}(x+1)
|
extreme\:f(x)=x^{\frac{1}{5}}(x+1)
|
P(x,y)=0.4x+0.6y
|
P(x,y)=0.4x+0.6y
|
extreme f(x)=(1+x)^2(6-x)
|
extreme\:f(x)=(1+x)^{2}(6-x)
|
extreme f(x)=-3x^2-x+2,-4<= x<= 4
|
extreme\:f(x)=-3x^{2}-x+2,-4\le\:x\le\:4
|
extreme sqrt((7+2x)/x)
|
extreme\:\sqrt{\frac{7+2x}{x}}
|
extreme f(x)=((e^x))/(7+e^x)
|
extreme\:f(x)=\frac{(e^{x})}{7+e^{x}}
|
extreme f(x)=99-x/(20)
|
extreme\:f(x)=99-\frac{x}{20}
|
extreme f(x)=x(20-2x)(48/2-x)
|
extreme\:f(x)=x(20-2x)(\frac{48}{2}-x)
|
f(x,y)=6x^2y-9xy^3+3y^3
|
f(x,y)=6x^{2}y-9xy^{3}+3y^{3}
|
extreme 1/x-[ 1/x ]
|
extreme\:\frac{1}{x}-[\frac{1}{x}]
|
f(x,y)=(6xy)/(x^2+y^2+1)
|
f(x,y)=\frac{6xy}{x^{2}+y^{2}+1}
|
extreme f(x,y)=yx^2+2y^2+x^2
|
extreme\:f(x,y)=yx^{2}+2y^{2}+x^{2}
|
domain of f(x)=((2+x))/x
|
domain\:f(x)=\frac{(2+x)}{x}
|
extreme f(x)=-x^2+8,-2<= x<= 4
|
extreme\:f(x)=-x^{2}+8,-2\le\:x\le\:4
|
extreme f(x)=-x^4+4x^3+9x-6
|
extreme\:f(x)=-x^{4}+4x^{3}+9x-6
|
extreme f(x)=(x^2+2x-3)/(x^2-x)
|
extreme\:f(x)=\frac{x^{2}+2x-3}{x^{2}-x}
|
extreme f(x,y)=-3x^2-6y^2-6xy+66x+102y
|
extreme\:f(x,y)=-3x^{2}-6y^{2}-6xy+66x+102y
|
extreme 89e^{x^4}
|
extreme\:89e^{x^{4}}
|
extreme-4.9x^2+10x+3
|
extreme\:-4.9x^{2}+10x+3
|
extreme f(x)=e^x 1/(x^5),(0,infinity)
|
extreme\:f(x)=e^{x}\frac{1}{x^{5}},(0,\infty\:)
|
extreme f(x)= x/((x-5)^2)
|
extreme\:f(x)=\frac{x}{(x-5)^{2}}
|
extreme y=x^2+x^4+4
|
extreme\:y=x^{2}+x^{4}+4
|
extreme 13x^2(x-10)+15
|
extreme\:13x^{2}(x-10)+15
|
slope of 5x-2y=10
|
slope\:5x-2y=10
|
range of f(x)=(sqrt(x+3))/x
|
range\:f(x)=\frac{\sqrt{x+3}}{x}
|
F(x,y)=y^2+xy-2x-2y+2
|
F(x,y)=y^{2}+xy-2x-2y+2
|
extreme x^3-3x-6
|
extreme\:x^{3}-3x-6
|
f(x,y)=3x^2+y^2-2xy+42-8y
|
f(x,y)=3x^{2}+y^{2}-2xy+42-8y
|
extreme y=-3cos(x),0<= x<= 2pi
|
extreme\:y=-3\cos(x),0\le\:x\le\:2π
|
extreme x^2-2xy+3y^2-20y
|
extreme\:x^{2}-2xy+3y^{2}-20y
|
extreme x^3-3x-1
|
extreme\:x^{3}-3x-1
|
f(x,y)=2xy-3xy^2
|
f(x,y)=2xy-3xy^{2}
|
extreme f(x)=7x+9,-6<= x<= 3
|
extreme\:f(x)=7x+9,-6\le\:x\le\:3
|
extreme (2x)/((3x-6))
|
extreme\:\frac{2x}{(3x-6)}
|
extreme f(x)=-x^3+x^2+4x-1
|
extreme\:f(x)=-x^{3}+x^{2}+4x-1
|
extreme f(x)=2(3x)^x,0.1<= x<= 1
|
extreme\:f(x)=2(3x)^{x},0.1\le\:x\le\:1
|
extreme f(x)=4-5x^2-,3<= x<= 2
|
extreme\:f(x)=4-5x^{2}-,3\le\:x\le\:2
|
extreme f(x)=8x-9sin(x),0<= x<= pi/2
|
extreme\:f(x)=8x-9\sin(x),0\le\:x\le\:\frac{π}{2}
|
extreme f(x)=2x^2-12x+7
|
extreme\:f(x)=2x^{2}-12x+7
|