Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph
Exponential Graph
Quadratic Graph
Sine Graph
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
range of f(x)=-e^{x-1}-1
range\:f(x)=-e^{x-1}-1
slope of 7x-8y=56
slope\:7x-8y=56
domain of ln((x+1)/2)
domain\:\ln(\frac{x+1}{2})
monotone f(x)=21x^2-x^3
monotone\:f(x)=21x^{2}-x^{3}
simplify (22.42)(1.22)
simplify\:(22.42)(1.22)
inflection x^4-12x^3+48x^2-64x
inflection\:x^{4}-12x^{3}+48x^{2}-64x
inverse of 1/(ln(x))
inverse\:\frac{1}{\ln(x)}
inverse of f(x)= 1/2 x^3-2
inverse\:f(x)=\frac{1}{2}x^{3}-2
vertices y=-6(x-4)^2-1
vertices\:y=-6(x-4)^{2}-1
inflection f(x)=(x^2)/(x+2)
inflection\:f(x)=\frac{x^{2}}{x+2}
domain of f(x)=(2/x)(x/(x+2))
domain\:f(x)=(\frac{2}{x})(\frac{x}{x+2})
inverse of 4x-3
inverse\:4x-3
slope ofintercept 8y-4x=-56
slopeintercept\:8y-4x=-56
symmetry x^3+10x
symmetry\:x^{3}+10x
monotone-2x+7
monotone\:-2x+7
intercepts of f(x)=(x^2-3x-10)/(x-5)
intercepts\:f(x)=\frac{x^{2}-3x-10}{x-5}
inverse of g(x)=x^2
inverse\:g(x)=x^{2}
inverse of f(x)=-1+2x^5
inverse\:f(x)=-1+2x^{5}
slope of (-6-5)(4.4)
slope\:(-6-5)(4.4)
inflection-x^2+5x-7
inflection\:-x^{2}+5x-7
y=3x-2
y=3x-2
monotone 1/(x^2)
monotone\:\frac{1}{x^{2}}
slope ofintercept 2x+y=2
slopeintercept\:2x+y=2
domain of f(x)= 1/(sqrt(3-x))
domain\:f(x)=\frac{1}{\sqrt{3-x}}
inverse of f(x)=3(x-9)/2+20
inverse\:f(x)=3\frac{x-9}{2}+20
asymptotes of f(x)=(3-2x)/(2x+17)
asymptotes\:f(x)=\frac{3-2x}{2x+17}
asymptotes of f(x)= 1/(4x^2-8x-12)
asymptotes\:f(x)=\frac{1}{4x^{2}-8x-12}
asymptotes of f(x)=(ln(x))/(x+5)
asymptotes\:f(x)=\frac{\ln(x)}{x+5}
simplify (-4)(3.2)
simplify\:(-4)(3.2)
simplify (-4.9)(1.2)
simplify\:(-4.9)(1.2)
range of f(x)=3x+9
range\:f(x)=3x+9
domain of sqrt(x+9)-sqrt(x+8)
domain\:\sqrt{x+9}-\sqrt{x+8}
inverse of-2sin((x-pi)/2)
inverse\:-2\sin(\frac{x-π}{2})
domain of 8/(sqrt(x-1))
domain\:\frac{8}{\sqrt{x-1}}
distance (0,6),(2,3)
distance\:(0,6),(2,3)
asymptotes of f(x)=(x^2)/(2-x)
asymptotes\:f(x)=\frac{x^{2}}{2-x}
intercepts of f(x)=ln(x)+7
intercepts\:f(x)=\ln(x)+7
inverse of f(x)= 1/(x+15)
inverse\:f(x)=\frac{1}{x+15}
symmetry y=3x^2+3
symmetry\:y=3x^{2}+3
slope of y=-19
slope\:y=-19
intercepts of x^3-1
intercepts\:x^{3}-1
asymptotes of g(x)=(4x-3)/(2x+4)
asymptotes\:g(x)=\frac{4x-3}{2x+4}
extreme f(x)=x^2-2x-80
extreme\:f(x)=x^{2}-2x-80
domain of (x-5)/(x+2)
domain\:\frac{x-5}{x+2}
inflection 2x^4+16x^3-11
inflection\:2x^{4}+16x^{3}-11
inflection x-2ln(x)
inflection\:x-2\ln(x)
distance (4,-3),(5,-7)
distance\:(4,-3),(5,-7)
asymptotes of (4x+9)/(3x-2)
asymptotes\:\frac{4x+9}{3x-2}
domain of f(x)=(x-6)/(x^2+3x-54)
domain\:f(x)=\frac{x-6}{x^{2}+3x-54}
\begin{pmatrix}\sqrt{3}&\end{pmatrix}\begin{pmatrix}\sqrt{5}&\end{pmatrix}
inverse of f(x)=(x+6)^2+16
inverse\:f(x)=(x+6)^{2}+16
monotone (x+1)/(x+3)
monotone\:\frac{x+1}{x+3}
distance (11,-18),(-14,-18)
distance\:(11,-18),(-14,-18)
parity 1/(dx)
parity\:\frac{1}{dx}
inverse of f(x)=13
inverse\:f(x)=13
inverse of f(x)=2+ln(ln(x-3))
inverse\:f(x)=2+\ln(\ln(x-3))
extreme f(x)=x^3-2x-1
extreme\:f(x)=x^{3}-2x-1
y=x^2+4x+4
y=x^{2}+4x+4
domain of cos(3t)
domain\:\cos(3t)
critical f(x)=3-3x+3x^2-x^3
critical\:f(x)=3-3x+3x^{2}-x^{3}
perpendicular y=-1/4 x+3,(3,-3)
perpendicular\:y=-\frac{1}{4}x+3,(3,-3)
domain of f(x)=-(31)/((6+t)^2)
domain\:f(x)=-\frac{31}{(6+t)^{2}}
parity f(x)=x^2(x-2)^3(x+3)
parity\:f(x)=x^{2}(x-2)^{3}(x+3)
intercepts of y=(x+8)/x
intercepts\:y=\frac{x+8}{x}
inverse of f(x)=3^{2x+4}+3
inverse\:f(x)=3^{2x+4}+3
parallel y= 1/3+2
parallel\:y=\frac{1}{3}+2
asymptotes of f(x)=(x^2-1)/(2x+4)
asymptotes\:f(x)=\frac{x^{2}-1}{2x+4}
inverse of f(x)= 1/9 (4x+1)
inverse\:f(x)=\frac{1}{9}(4x+1)
perpendicular 4x-y=-8
perpendicular\:4x-y=-8
inverse of f(x)= 1/(2x-5)
inverse\:f(x)=\frac{1}{2x-5}
critical y=((x+3))/(x^2-4)
critical\:y=\frac{(x+3)}{x^{2}-4}
asymptotes of f(x)=(10000)/(10+x)
asymptotes\:f(x)=\frac{10000}{10+x}
inverse of f(x)=4x^3+3
inverse\:f(x)=4x^{3}+3
parity f(x)=x^3+5
parity\:f(x)=x^{3}+5
simplify (0.7288)(0.9192)
simplify\:(0.7288)(0.9192)
symmetry x^2+x-2
symmetry\:x^{2}+x-2
inverse of f(x)= 7/(3x-1)
inverse\:f(x)=\frac{7}{3x-1}
domain of f(x)=sqrt(x+2)
domain\:f(x)=\sqrt{x+2}
inverse of f(x)=((x-7))/7
inverse\:f(x)=\frac{(x-7)}{7}
domain of \sqrt[3]{x}+4
domain\:\sqrt[3]{x}+4
range of tan(pi/3 x)
range\:\tan(\frac{π}{3}x)
line m=3,(3,-9)
line\:m=3,(3,-9)
simplify (-2.2)(7)
simplify\:(-2.2)(7)
range of 6sec(x)
range\:6\sec(x)
inverse of f(x)=x^4-3
inverse\:f(x)=x^{4}-3
inverse of f(x)=(5x-7)^3
inverse\:f(x)=(5x-7)^{3}
line (-2,1),(4,2)
line\:(-2,1),(4,2)
symmetry (3x)/(x-3)
symmetry\:\frac{3x}{x-3}
intercepts of f(x)=16x^2+4y^2=64
intercepts\:f(x)=16x^{2}+4y^{2}=64
domain of f(x)=ln((x^2-2)/(2x-1))
domain\:f(x)=\ln(\frac{x^{2}-2}{2x-1})
symmetry-4x^2+8
symmetry\:-4x^{2}+8
parity f(x)=x^3-3x
parity\:f(x)=x^{3}-3x
inverse of f(x)=4x-x^2
inverse\:f(x)=4x-x^{2}
intercepts of f(x)=-2x^2-4x
intercepts\:f(x)=-2x^{2}-4x
critical sin(7x)
critical\:\sin(7x)
domain of f(x)=(1-2sqrt(x))/x
domain\:f(x)=\frac{1-2\sqrt{x}}{x}
asymptotes of (2-x)/(1-x)
asymptotes\:\frac{2-x}{1-x}
domain of f(x)=log_{5}(x)
domain\:f(x)=\log_{5}(x)
asymptotes of f(x)=(x^2+5x+6)/(x+4)
asymptotes\:f(x)=\frac{x^{2}+5x+6}{x+4}
domain of f(x)=(x+2)/2
domain\:f(x)=\frac{x+2}{2}
1
..
388
389
390
391
392
..
1324