extreme (3+x)/(9-x),-9<= x<= 0
|
extreme\:\frac{3+x}{9-x},-9\le\:x\le\:0
|
extreme (x-1)^2(2x-8)
|
extreme\:(x-1)^{2}(2x-8)
|
extreme y=4x^{3/4}-x(256)
|
extreme\:y=4x^{\frac{3}{4}}-x(256)
|
extreme f(x)=sqrt(64-x^2),-8<= x<= 8
|
extreme\:f(x)=\sqrt{64-x^{2}},-8\le\:x\le\:8
|
extreme-(2e^x)/(-4x-1)
|
extreme\:-\frac{2e^{x}}{-4x-1}
|
extreme f(x)= 4/(4x^2-1)+b
|
extreme\:f(x)=\frac{4}{4x^{2}-1}+b
|
extreme f(x)=3x^2-36x+81
|
extreme\:f(x)=3x^{2}-36x+81
|
K(r,s)=3r-4s
|
K(r,s)=3r-4s
|
extreme f(9)= t/(t-4)
|
extreme\:f(9)=\frac{t}{t-4}
|
extreme f(x,y)=3x^2-2xy+y^2
|
extreme\:f(x,y)=3x^{2}-2xy+y^{2}
|
domain of f(x)=sqrt(ln((5x-x^2)/4))
|
domain\:f(x)=\sqrt{\ln(\frac{5x-x^{2}}{4})}
|
minimum 2x^2+8x-1
|
minimum\:2x^{2}+8x-1
|
f(x,y)=x^{3/4}y^{1/4}
|
f(x,y)=x^{\frac{3}{4}}y^{\frac{1}{4}}
|
extreme x^3-3x^2+6x-6
|
extreme\:x^{3}-3x^{2}+6x-6
|
extreme f(x)=x^{(2/3)}(x-3)
|
extreme\:f(x)=x^{(\frac{2}{3})}(x-3)
|
extreme f(x)=6x^3+54x^2+144x+54
|
extreme\:f(x)=6x^{3}+54x^{2}+144x+54
|
extreme (x-7)(x^2-14x-98)
|
extreme\:(x-7)(x^{2}-14x-98)
|
extreme y=(4-x)*4^x
|
extreme\:y=(4-x)\cdot\:4^{x}
|
extreme f(x)=3+3x-3x^2,0<= x<= 3
|
extreme\:f(x)=3+3x-3x^{2},0\le\:x\le\:3
|
minimum 100
|
minimum\:100
|
extreme f(x)= 1/(sqrt(x^2+1))
|
extreme\:f(x)=\frac{1}{\sqrt{x^{2}+1}}
|
distance (-2,-10)(-10,-4)
|
distance\:(-2,-10)(-10,-4)
|
extreme x^2+(405000)/x
|
extreme\:x^{2}+\frac{405000}{x}
|
extreme (2x^2-14x+24)/(x^2+6x+40)
|
extreme\:\frac{2x^{2}-14x+24}{x^{2}+6x+40}
|
extreme f(x)=x(5-x)(8-x),0<x<5
|
extreme\:f(x)=x(5-x)(8-x),0<x<5
|
extreme f(x)=((x^2+121))/(2x)
|
extreme\:f(x)=\frac{(x^{2}+121)}{2x}
|
extreme f(x)=-7+12x-3x^2
|
extreme\:f(x)=-7+12x-3x^{2}
|
extreme 2x^3-6
|
extreme\:2x^{3}-6
|
extreme f(x)=(x^2-7)(x^2-6)(x^2+4)
|
extreme\:f(x)=(x^{2}-7)(x^{2}-6)(x^{2}+4)
|
extreme f(x)=(x-3)^{4/3},-7<= x<= 7
|
extreme\:f(x)=(x-3)^{\frac{4}{3}},-7\le\:x\le\:7
|
extreme 2x^3-2x^2-x-9
|
extreme\:2x^{3}-2x^{2}-x-9
|
extreme y=(x^2)/2-3x+7/2
|
extreme\:y=\frac{x^{2}}{2}-3x+\frac{7}{2}
|
domain of f(x)=5x^2+7
|
domain\:f(x)=5x^{2}+7
|
P(x,y)=-4x+5y-x^2+2xy-7y^2+9
|
P(x,y)=-4x+5y-x^{2}+2xy-7y^{2}+9
|
extreme f(x)=2x^2+5(7-x)^2
|
extreme\:f(x)=2x^{2}+5(7-x)^{2}
|
extreme f(x)=4x^3-3x^4+5
|
extreme\:f(x)=4x^{3}-3x^{4}+5
|
extreme f(x)=-3csc(x)
|
extreme\:f(x)=-3\csc(x)
|
extreme f(x)=(x^3)/3-375x^2+129600x
|
extreme\:f(x)=\frac{x^{3}}{3}-375x^{2}+129600x
|
extreme f(x)=e^{4x-x^2}
|
extreme\:f(x)=e^{4x-x^{2}}
|
f(x,y)=x^2+4y^2-6x+8y+2
|
f(x,y)=x^{2}+4y^{2}-6x+8y+2
|
inverse of f(y)=x+7
|
inverse\:f(y)=x+7
|
extreme f(x,y)=x^2-y^2+9
|
extreme\:f(x,y)=x^{2}-y^{2}+9
|
extreme (x+3)^2+1
|
extreme\:(x+3)^{2}+1
|
extreme y=(x^2-2x+1)/(x^2+3)
|
extreme\:y=\frac{x^{2}-2x+1}{x^{2}+3}
|
extreme f(x)=(7+x)(11-3x)^{1/3}
|
extreme\:f(x)=(7+x)(11-3x)^{\frac{1}{3}}
|
extreme y=x^{-4}*e^{x^4}
|
extreme\:y=x^{-4}\cdot\:e^{x^{4}}
|
extreme f(x)=-2x^3+12
|
extreme\:f(x)=-2x^{3}+12
|
minimum xe^{-2x}
|
minimum\:xe^{-2x}
|
extreme f(x)=-2x^2+3x-4
|
extreme\:f(x)=-2x^{2}+3x-4
|
extreme f(x)=(2+4x^2)/(1-3x)
|
extreme\:f(x)=\frac{2+4x^{2}}{1-3x}
|
extreme f(x)=6x+(24)/(x^2)+5,x>0
|
extreme\:f(x)=6x+\frac{24}{x^{2}}+5,x>0
|
perpendicular 10x+4y=-56
|
perpendicular\:10x+4y=-56
|
extreme f(x)=-5x^{+30x+1}
|
extreme\:f(x)=-5x^{+30x+1}
|
f(x,y)=3x-5y-2
|
f(x,y)=3x-5y-2
|
extreme f(x)=x^3-2x^2-6x+1
|
extreme\:f(x)=x^{3}-2x^{2}-6x+1
|
extreme f(x)=-20x^2-25y^2+440x+250y+150
|
extreme\:f(x)=-20x^{2}-25y^{2}+440x+250y+150
|
extreme f(x)=(3-*)/(x+2)
|
extreme\:f(x)=\frac{3-\cdot\:}{x+2}
|
extreme x^2+12+18x^{-1}
|
extreme\:x^{2}+12+18x^{-1}
|
f(x)=x*y*e^{x+2y}
|
f(x)=x\cdot\:y\cdot\:e^{x+2y}
|
extreme f(x)=(350)/((1+34e^{-t))}
|
extreme\:f(x)=\frac{350}{(1+34e^{-t})}
|
extreme f(x)=-0.000003x^3+9x-300
|
extreme\:f(x)=-0.000003x^{3}+9x-300
|
extreme (x-5)/(x-7)
|
extreme\:\frac{x-5}{x-7}
|
inverse of f(x)=(3x+2)/(4+x)
|
inverse\:f(x)=\frac{3x+2}{4+x}
|
extreme f(x,y)=y^3-yx-x^2y^2+x^3
|
extreme\:f(x,y)=y^{3}-yx-x^{2}y^{2}+x^{3}
|
minimum 4x^2-400x+22500
|
minimum\:4x^{2}-400x+22500
|
extreme (sqrt(x)(x-3)^2)/2
|
extreme\:\frac{\sqrt{x}(x-3)^{2}}{2}
|
extreme f(x)=-0.1t^2+1.2t+98.6
|
extreme\:f(x)=-0.1t^{2}+1.2t+98.6
|
extreme f(x)=-0.1t^2+1.2t+98.7
|
extreme\:f(x)=-0.1t^{2}+1.2t+98.7
|
extreme x^4-2x^2+1[-2.2]
|
extreme\:x^{4}-2x^{2}+1[-2.2]
|
P(a,b)=a+b
|
P(a,b)=a+b
|
extreme f(x)=3x^3+92x^2-54x+1
|
extreme\:f(x)=3x^{3}+92x^{2}-54x+1
|
extreme y=-1/3 e^{-3x}x-10/9 e^{-3x}
|
extreme\:y=-\frac{1}{3}e^{-3x}x-\frac{10}{9}e^{-3x}
|
f(y)=6xy-6y
|
f(y)=6xy-6y
|
domain of f(x)= 1/(x-7)
|
domain\:f(x)=\frac{1}{x-7}
|
extreme f(x)=0.1x^2=1.2x+98.5
|
extreme\:f(x)=0.1x^{2}=1.2x+98.5
|
extreme f(x)=x(7-x)(30-2x)
|
extreme\:f(x)=x(7-x)(30-2x)
|
minimum f(x)=xe^{-3x}
|
minimum\:f(x)=xe^{-3x}
|
S(a,b)=2pi(a+b)
|
S(a,b)=2π(a+b)
|
extreme f(x,y)=-7x^2+5y^2-4x-5y+5
|
extreme\:f(x,y)=-7x^{2}+5y^{2}-4x-5y+5
|
extreme f(x)=2x^3+3x^2+x+1
|
extreme\:f(x)=2x^{3}+3x^{2}+x+1
|
extreme f(x)=-1+4(1+x)^2
|
extreme\:f(x)=-1+4(1+x)^{2}
|
f(x)=2xθ^x+θ^x
|
f(x)=2xθ^{x}+θ^{x}
|
extreme 27.8
|
extreme\:27.8
|
line (5,0),(6,4)
|
line\:(5,0),(6,4)
|
inverse of y=(e^x)/(1+9e^x)
|
inverse\:y=\frac{e^{x}}{1+9e^{x}}
|
P(x,y)=40x+50y
|
P(x,y)=40x+50y
|
extreme y=(x^2+1)/x
|
extreme\:y=\frac{x^{2}+1}{x}
|
extreme f(x)=x^3-12x^2-27x+2,-2<= x<= 10
|
extreme\:f(x)=x^{3}-12x^{2}-27x+2,-2\le\:x\le\:10
|
f(x,y)=y(x^2+1)
|
f(x,y)=y(x^{2}+1)
|
extreme f(x,y)=x^2+9
|
extreme\:f(x,y)=x^{2}+9
|
extreme f(x)=-x^2+3xy-8y^2-5x+42y+9
|
extreme\:f(x)=-x^{2}+3xy-8y^{2}-5x+42y+9
|
y=In\sqrt[3]{6x+4}
|
y=In\sqrt[3]{6x+4}
|
minimum y=sqrt(1-x^2)
|
minimum\:y=\sqrt{1-x^{2}}
|
extreme y=-x^2+72x-458
|
extreme\:y=-x^{2}+72x-458
|
f(x,y)=x^2+y^2+4x-4y
|
f(x,y)=x^{2}+y^{2}+4x-4y
|
inverse of f(x)=sqrt(x^2+3x)
|
inverse\:f(x)=\sqrt{x^{2}+3x}
|
extreme f(x)=12x^5+30x^4-160x^3+5
|
extreme\:f(x)=12x^{5}+30x^{4}-160x^{3}+5
|
extreme f(x)=2x^3+16x^2+32x+5
|
extreme\:f(x)=2x^{3}+16x^{2}+32x+5
|
extreme y=(x+5)/(x^2-4)
|
extreme\:y=\frac{x+5}{x^{2}-4}
|
f(x,y)=4-x^4+2x^2-y^2
|
f(x,y)=4-x^{4}+2x^{2}-y^{2}
|