domain of sqrt(6-x)^2+2
|
domain\:\sqrt{6-x}^{2}+2
|
extreme f(x,y)=e^x(x+y^2+2y)
|
extreme\:f(x,y)=e^{x}(x+y^{2}+2y)
|
f(x,y)=3y^2+5xy+y+x^2+4x-5
|
f(x,y)=3y^{2}+5xy+y+x^{2}+4x-5
|
minimum 9
|
minimum\:9
|
extreme f(x)=(8-x^3)/(x^2)
|
extreme\:f(x)=\frac{8-x^{3}}{x^{2}}
|
extreme f(x)=(6x)/(x^2+25)
|
extreme\:f(x)=\frac{6x}{x^{2}+25}
|
extreme f(x)=(x+1/x)
|
extreme\:f(x)=(x+\frac{1}{x})
|
extreme f(x)=x^2+y^2+x+y+xy
|
extreme\:f(x)=x^{2}+y^{2}+x+y+xy
|
extreme f(x)=(ln(x))/(8x),1<= x<= 4
|
extreme\:f(x)=\frac{\ln(x)}{8x},1\le\:x\le\:4
|
y(x,t)=6x3^t
|
y(x,t)=6x3^{t}
|
range of y=e^{x-1}
|
range\:y=e^{x-1}
|
extreme f(x)=(1+3x)/(sqrt(4+5x^2))
|
extreme\:f(x)=\frac{1+3x}{\sqrt{4+5x^{2}}}
|
extreme f(x)=x^2+y^2-6x+3y
|
extreme\:f(x)=x^{2}+y^{2}-6x+3y
|
minimum 3x^2-12x+9
|
minimum\:3x^{2}-12x+9
|
extreme f(x)=(2x^2+1)^2
|
extreme\:f(x)=(2x^{2}+1)^{2}
|
f(x,y)=(100)/(1+x^2+y^2)
|
f(x,y)=\frac{100}{1+x^{2}+y^{2}}
|
extreme f(x)= 1/6 x^3-x^2+6x+11
|
extreme\:f(x)=\frac{1}{6}x^{3}-x^{2}+6x+11
|
extreme f(x,y)=x^2+y^2+8x-2y
|
extreme\:f(x,y)=x^{2}+y^{2}+8x-2y
|
extreme f(x)=230+8x^3+x^4
|
extreme\:f(x)=230+8x^{3}+x^{4}
|
f(x,y)=e^{-(x^2+y^2)}(x^2+2y^2)
|
f(x,y)=e^{-(x^{2}+y^{2})}(x^{2}+2y^{2})
|
asymptotes of f(x)=(2x^2)/(x^2-1)
|
asymptotes\:f(x)=\frac{2x^{2}}{x^{2}-1}
|
extreme (ln(4x))/x
|
extreme\:\frac{\ln(4x)}{x}
|
extreme f(x)= 4/(x-3)
|
extreme\:f(x)=\frac{4}{x-3}
|
extreme f(x,y)=x^2+2y^2+2x-3
|
extreme\:f(x,y)=x^{2}+2y^{2}+2x-3
|
extreme f(x)=19+4x-x^2
|
extreme\:f(x)=19+4x-x^{2}
|
extreme f(x,y)=x^3+3x^2y+y^3-y
|
extreme\:f(x,y)=x^{3}+3x^{2}y+y^{3}-y
|
extreme f(x)=e^x+e^{-x}
|
extreme\:f(x)=e^{x}+e^{-x}
|
extreme 5x+9x^{-1}
|
extreme\:5x+9x^{-1}
|
extreme f(x)=3x^3-3x^2+12x-5,-1<= x<= 1
|
extreme\:f(x)=3x^{3}-3x^{2}+12x-5,-1\le\:x\le\:1
|
f(x,y)=ln(-x^2-y^2+4)
|
f(x,y)=\ln(-x^{2}-y^{2}+4)
|
extreme points of f(x)=2x^4+6x^3-12x^2+8
|
extreme\:points\:f(x)=2x^{4}+6x^{3}-12x^{2}+8
|
extreme f(x)=3+(\sqrt[3]{x^3-1})/(x-3)
|
extreme\:f(x)=3+\frac{\sqrt[3]{x^{3}-1}}{x-3}
|
extreme f(x)=-2x^3+21x^2-36x+3
|
extreme\:f(x)=-2x^{3}+21x^{2}-36x+3
|
extreme f(x)=3x^2+5y^2-10xy-6y+1
|
extreme\:f(x)=3x^{2}+5y^{2}-10xy-6y+1
|
extreme 9600+280x-10x^2
|
extreme\:9600+280x-10x^{2}
|
extreme 4x^3+9x^2-54x+6
|
extreme\:4x^{3}+9x^{2}-54x+6
|
extreme f(x)=x^2+y^2-3y
|
extreme\:f(x)=x^{2}+y^{2}-3y
|
extreme f(x)=\sqrt[3]{5x^3+5}
|
extreme\:f(x)=\sqrt[3]{5x^{3}+5}
|
extreme f(x)=x^5-10x^4-1=x^4(x-10)-1
|
extreme\:f(x)=x^{5}-10x^{4}-1=x^{4}(x-10)-1
|
monotone intervals f(x)=-sqrt(x+3)
|
monotone\:intervals\:f(x)=-\sqrt{x+3}
|
extreme f(x)=2x^3+3x^2-12x+4,-2<= x<= 5
|
extreme\:f(x)=2x^{3}+3x^{2}-12x+4,-2\le\:x\le\:5
|
extreme f(x)=x^2+y^2-2y
|
extreme\:f(x)=x^{2}+y^{2}-2y
|
extreme f(x)=x^2-12x+5
|
extreme\:f(x)=x^{2}-12x+5
|
extreme f(x)=x^2-y^2+21
|
extreme\:f(x)=x^{2}-y^{2}+21
|
f(x,y)=(9x^2+4x+5)(9y^2+6y+6)
|
f(x,y)=(9x^{2}+4x+5)(9y^{2}+6y+6)
|
extreme f(x)=6x^3-x^2-5x+7
|
extreme\:f(x)=6x^{3}-x^{2}-5x+7
|
f(x)=γ(x+1)
|
f(x)=γ(x+1)
|
extreme f(x)= x/(x^2-64)
|
extreme\:f(x)=\frac{x}{x^{2}-64}
|
slope intercept of 5x-15y=17
|
slope\:intercept\:5x-15y=17
|
extreme f(x)= x/(x^2-x+2),-2<= x<= 1
|
extreme\:f(x)=\frac{x}{x^{2}-x+2},-2\le\:x\le\:1
|
extreme-4.9t^2+283t+353
|
extreme\:-4.9t^{2}+283t+353
|
minimum y=0(x+0)(x+(-8))
|
minimum\:y=0(x+0)(x+(-8))
|
extreme f(x)=x(10-2x)(12-2x)
|
extreme\:f(x)=x(10-2x)(12-2x)
|
extreme f(x)=(x-2)(x+5)(x+2)
|
extreme\:f(x)=(x-2)(x+5)(x+2)
|
extreme f(x)=x^3-75x+7
|
extreme\:f(x)=x^{3}-75x+7
|
extreme f(x)=xln(x)-x
|
extreme\:f(x)=x\ln(x)-x
|
extreme f(x)=6+3x-3x^2,0<= x<= 3
|
extreme\:f(x)=6+3x-3x^{2},0\le\:x\le\:3
|
extreme (x^2+x)/(x-1)
|
extreme\:\frac{x^{2}+x}{x-1}
|
domain of f(x)=-1/(2(7-x)^{1/2)}
|
domain\:f(x)=-\frac{1}{2(7-x)^{\frac{1}{2}}}
|
domain of f(x)=(x-1)^2-9
|
domain\:f(x)=(x-1)^{2}-9
|
critical points of f(x)=(8-4x)e^x
|
critical\:points\:f(x)=(8-4x)e^{x}
|
extreme (ln(x))/(6x)
|
extreme\:\frac{\ln(x)}{6x}
|
extreme f(x)=9sin^2(x)+9sin(x)
|
extreme\:f(x)=9\sin^{2}(x)+9\sin(x)
|
extreme h(x)=-6x^3+18x^2+3
|
extreme\:h(x)=-6x^{3}+18x^{2}+3
|
minimum F(x)=(2x)/(x^2+16),-8<= x<= 8
|
minimum\:F(x)=\frac{2x}{x^{2}+16},-8\le\:x\le\:8
|
extreme-(9/2)^2-7^2+9/2-14+3
|
extreme\:-(\frac{9}{2})^{2}-7^{2}+\frac{9}{2}-14+3
|
extreme x(sqrt(8-x^2))
|
extreme\:x(\sqrt{8-x^{2}})
|
extreme f(x)=f(x)=-8x^2-144x+6
|
extreme\:f(x)=f(x)=-8x^{2}-144x+6
|
extreme f(x)=x^3-3x[0.3]
|
extreme\:f(x)=x^{3}-3x[0.3]
|
extreme f(x)=(4860)/x+18x+731856
|
extreme\:f(x)=\frac{4860}{x}+18x+731856
|
extreme f(x)=3x^2+4x-6
|
extreme\:f(x)=3x^{2}+4x-6
|
domain of sin(arccos(x))
|
domain\:\sin(\arccos(x))
|
extreme f(x,y)=(x-3)^2-(y-1)^2
|
extreme\:f(x,y)=(x-3)^{2}-(y-1)^{2}
|
minimum f(x,y)=7e^y-3ye^x
|
minimum\:f(x,y)=7e^{y}-3ye^{x}
|
extreme f(x,y)=(x-4)ln(xy)
|
extreme\:f(x,y)=(x-4)\ln(xy)
|
extreme f(x)= 1/2 (7x-2),x<= 3
|
extreme\:f(x)=\frac{1}{2}(7x-2),x\le\:3
|
extreme 1/(t^3+2)
|
extreme\:\frac{1}{t^{3}+2}
|
extreme f(x)= 6/7 (x^2-9)^{2/3}
|
extreme\:f(x)=\frac{6}{7}(x^{2}-9)^{\frac{2}{3}}
|
extreme f(x,y)=7xy+14x-x^2+2y^2
|
extreme\:f(x,y)=7xy+14x-x^{2}+2y^{2}
|
extreme 4x^2-8x^4
|
extreme\:4x^{2}-8x^{4}
|
line (-8,5),(17,8)
|
line\:(-8,5),(17,8)
|
extreme f(x)=(x^2(x-1))/(x+2),x\ne 2
|
extreme\:f(x)=\frac{x^{2}(x-1)}{x+2},x\ne\:2
|
minimum f(x)=9x^3+21x^2+8x-3
|
minimum\:f(x)=9x^{3}+21x^{2}+8x-3
|
extreme f(x)=x^2-2x+5[-1.4]
|
extreme\:f(x)=x^{2}-2x+5[-1.4]
|
extreme 2x^4-196x^2-3
|
extreme\:2x^{4}-196x^{2}-3
|
extreme f(x)=-x^2-y^2+8x+8y
|
extreme\:f(x)=-x^{2}-y^{2}+8x+8y
|
extreme f(x)=sin(3x),-pi/4 <= x<= pi/3
|
extreme\:f(x)=\sin(3x),-\frac{π}{4}\le\:x\le\:\frac{π}{3}
|
minimum f(x)=-x^2+5[-2,4]
|
minimum\:f(x)=-x^{2}+5[-2,4]
|
f(x,y)=x^3+8x^2y^2-8y^3-x+y
|
f(x,y)=x^{3}+8x^{2}y^{2}-8y^{3}-x+y
|
minimum f(t)=4t^3-36t^2+10,t>= 0
|
minimum\:f(t)=4t^{3}-36t^{2}+10,t\ge\:0
|
extreme points of f(x)=2x^2-7x+4
|
extreme\:points\:f(x)=2x^{2}-7x+4
|
extreme f(x)=3x^4+20x^3-36x^2-4
|
extreme\:f(x)=3x^{4}+20x^{3}-36x^{2}-4
|
extreme 2x^3-30x^2,-1<= x<= 11
|
extreme\:2x^{3}-30x^{2},-1\le\:x\le\:11
|
extreme x+4/x ,(2,4)
|
extreme\:x+\frac{4}{x},(2,4)
|
minimum f(x)=4x^3-x^4
|
minimum\:f(x)=4x^{3}-x^{4}
|
extreme f(x)=x(1-x)^{2/5}
|
extreme\:f(x)=x(1-x)^{\frac{2}{5}}
|
extreme f(x)=sqrt(x^2-2x+2),-2<= x<= 2
|
extreme\:f(x)=\sqrt{x^{2}-2x+2},-2\le\:x\le\:2
|
extreme 6/(-3x+2)
|
extreme\:\frac{6}{-3x+2}
|
extreme ln(x^2-4)
|
extreme\:\ln(x^{2}-4)
|
inflection points of f(x)=x^4-6x^3
|
inflection\:points\:f(x)=x^{4}-6x^{3}
|