derivative of(xe^x)
|
derivative(xe^{x})
|
derivative of y=x^{-2/3}
|
derivative\:y=x^{-\frac{2}{3}}
|
tangent of f(x)=e^x
|
tangent\:f(x)=e^{x}
|
tangent of f(x)=sqrt(x),\at x=1
|
tangent\:f(x)=\sqrt{x},\at\:x=1
|
derivative of y=2^x
|
derivative\:y=2^{x}
|
slope of x=1
|
slope\:x=1
|
polar(3,sqrt(3))
|
polar(3,\sqrt{3})
|
derivative of f(x)= 3/x
|
derivative\:f(x)=\frac{3}{x}
|
derivative of f(x)=xe^x
|
derivative\:f(x)=xe^{x}
|
polar(-4,4)
|
polar(-4,4)
|
derivative of y= x/(e^x)
|
derivative\:y=\frac{x}{e^{x}}
|
derivative of f(x)=(x^3+2)/3
|
derivative\:f(x)=\frac{x^{3}+2}{3}
|
slope of 3
|
slope\:3
|
derivative of f(x)=sqrt(1-x)
|
derivative\:f(x)=\sqrt{1-x}
|
derivative of f(x)=4sin(x)-x,\at x=0
|
derivative\:f(x)=4\sin(x)-x,\at\:x=0
|
derivative of y=\sqrt[3]{x}
|
derivative\:y=\sqrt[3]{x}
|
polar(1,-1)
|
polar(1,-1)
|
slope of 5x-4y=8
|
slope\:5x-4y=8
|
derivative of y=sqrt(2x)
|
derivative\:y=\sqrt{2x}
|
derivative of f(x)=cos(x^3)
|
derivative\:f(x)=\cos(x^{3})
|
derivative of 1-e^x
|
derivative\:1-e^{x}
|
tangent of f(x)=e^{-x}ln(x),\at(1,0)
|
tangent\:f(x)=e^{-x}\ln(x),\at(1,0)
|
distance(-9,0)(2,5)
|
distance(-9,0)(2,5)
|
slope of(8,4)
|
slope(8,4)
|
perpendicular y=2x-3
|
perpendicular\:y=2x-3
|
slope of y=-2/3 x+4
|
slope\:y=-\frac{2}{3}x+4
|
cartesian(2sqrt(3),(2pi)/3)
|
cartesian(2\sqrt{3},\frac{2π}{3})
|
tangent of f(x)=sec(x)+tan(x)
|
tangent\:f(x)=\sec(x)+\tan(x)
|
derivative of y=sin^{-1}(2x+1)
|
derivative\:y=\sin^{-1}(2x+1)
|
x=3
|
x=3
|
derivative of f(x)= x/2
|
derivative\:f(x)=\frac{x}{2}
|
t=(7+sqrt(19))/5
|
t=\frac{7+\sqrt{19}}{5}
|
integral of sin^2(x)
|
integral\:\sin^{2}(x)
|
cartesian(6,(7pi)/3)
|
cartesian(6,\frac{7π}{3})
|
derivative of 5x^2
|
derivative\:5x^{2}
|
derivative of f(x)=3sqrt(x)
|
derivative\:f(x)=3\sqrt{x}
|
derivative of f(x)=5^x
|
derivative\:f(x)=5^{x}
|
polar(-2sqrt(3),-2)
|
polar(-2\sqrt{3},-2)
|
polar(2,3)
|
polar(2,3)
|
tangent of f(x)=sqrt(x^2+15),\at x=7
|
tangent\:f(x)=\sqrt{x^{2}+15},\at\:x=7
|
polar y=x
|
polar\:y=x
|
polar(-3,-3)
|
polar(-3,-3)
|
x=1
|
x=1
|
derivative of f(x)= 1/16 x^4+1/(2x^2)
|
derivative\:f(x)=\frac{1}{16}x^{4}+\frac{1}{2x^{2}}
|
derivative of f(x)=tan(x)
|
derivative\:f(x)=\tan(x)
|
polar(3,4)
|
polar(3,4)
|
θ=(5pi)/3
|
θ=\frac{5π}{3}
|
derivative of y=(cos(x))^x
|
derivative\:y=(\cos(x))^{x}
|
polar(3,-2)
|
polar(3,-2)
|
derivative of 3e^x
|
derivative\:3e^{x}
|
line(2,-1)
|
line(2,-1)
|
derivative of f(x)=3-4x^2
|
derivative\:f(x)=3-4x^{2}
|
derivative of x-1
|
derivative\:x-1
|
polar(2,0)
|
polar(2,0)
|
derivative of y=2x^2
|
derivative\:y=2x^{2}
|
derivative of xe^{2x}
|
derivative\:xe^{2x}
|
derivative of f(x)=-7x^{4/3}+4/(x^3)
|
derivative\:f(x)=-7x^{\frac{4}{3}}+\frac{4}{x^{3}}
|
polar y^2=4x
|
polar\:y^{2}=4x
|
line y=3x-5
|
line\:y=3x-5
|
slope of(0,-3),(1,-2)
|
slope(0,-3),(1,-2)
|
polar(-1,sqrt(3))
|
polar(-1,\sqrt{3})
|
slope of x=5
|
slope\:x=5
|
normal of y=3x^2+13x+4,\at x=2
|
normal\:y=3x^{2}+13x+4,\at\:x=2
|
derivative of f(x)=sin(x)
|
derivative\:f(x)=\sin(x)
|
polar(-5,0)
|
polar(-5,0)
|
polar(2sqrt(3),-2)
|
polar(2\sqrt{3},-2)
|
derivative of x|x|
|
derivative\:x\left|x\right|
|
derivative of f(x)= 1/x
|
derivative\:f(x)=\frac{1}{x}
|
midpoint(17,1)(-2,8)
|
midpoint(17,1)(-2,8)
|
slope of 0
|
slope\:0
|
derivative of sec(x)tan(x)
|
derivative\:\sec(x)\tan(x)
|
derivative of f(x)= x/(x+1)
|
derivative\:f(x)=\frac{x}{x+1}
|
midpoint(6,5)(2,7)
|
midpoint(6,5)(2,7)
|
x=-6
|
x=-6
|
derivative of f(x)= 1/9 x^3+1/21 x-19
|
derivative\:f(x)=\frac{1}{9}x^{3}+\frac{1}{21}x-19
|
derivative of y=3sqrt(x)+2/(sqrt(x))
|
derivative\:y=3\sqrt{x}+\frac{2}{\sqrt{x}}
|
derivative of y=6-5x^9+2x^8-2x^6
|
derivative\:y=6-5x^{9}+2x^{8}-2x^{6}
|
tangent of f(x)=(2x)/(3x-1),\at x=1
|
tangent\:f(x)=\frac{2x}{3x-1},\at\:x=1
|
slope of y=-4
|
slope\:y=-4
|
midpoint(-2,3),(10,3)
|
midpoint(-2,3),(10,3)
|
tangent of f(x)
|
tangent\:f(x)
|
derivative of x^2-3x+4
|
derivative\:x^{2}-3x+4
|
derivative of f(x)= x/(x^2+1)
|
derivative\:f(x)=\frac{x}{x^{2}+1}
|
cartesian(4, pi/2)
|
cartesian(4,\frac{π}{2})
|
derivative of f(x)=sqrt(x+3)
|
derivative\:f(x)=\sqrt{x+3}
|
slope of(3,0)(0,-12)
|
slope(3,0)(0,-12)
|
derivative of f(x)=1
|
derivative\:f(x)=1
|
midpoint(2,5)(-3,-6)
|
midpoint(2,5)(-3,-6)
|
f(-2)=-2
|
f(-2)=-2
|
derivative of f(x)=3-4x,\at x=8
|
derivative\:f(x)=3-4x,\at\:x=8
|
derivative of f(x)= 1/(3x^2)-5/(2x)+8x-6
|
derivative\:f(x)=\frac{1}{3x^{2}}-\frac{5}{2x}+8x-6
|
cartesian(-3, pi/6)
|
cartesian(-3,\frac{π}{6})
|
tangent of y^3+xy^2-5=x+3y^2,\at x=3
|
tangent\:y^{3}+xy^{2}-5=x+3y^{2},\at\:x=3
|
slope of x=-7
|
slope\:x=-7
|
polar(-sqrt(2),sqrt(2))
|
polar(-\sqrt{2},\sqrt{2})
|
tangent of f(x)=sqrt(x),\at x=9
|
tangent\:f(x)=\sqrt{x},\at\:x=9
|
polar x^2+y^2=9
|
polar\:x^{2}+y^{2}=9
|
derivative of x^2+y^2=25
|
derivative\:x^{2}+y^{2}=25
|
polar(0,-1)
|
polar(0,-1)
|
derivative of y=x^2-4
|
derivative\:y=x^{2}-4
|