line(-6,0),(0,1)
|
line(-6,0),(0,1)
|
derivative of f(x)=sin(3x)
|
derivative\:f(x)=\sin(3x)
|
slope of y=-1/2 x-4
|
slope\:y=-\frac{1}{2}x-4
|
slope of 2x-5y=9
|
slope\:2x-5y=9
|
polar(-2,2)
|
polar(-2,2)
|
polar(-3,3)
|
polar(-3,3)
|
slope ofintercept 13x-11y=-12
|
slopeintercept\:13x-11y=-12
|
derivative of x^2e^{-3x}
|
derivative\:x^{2}e^{-3x}
|
derivative of 4-x^2
|
derivative\:4-x^{2}
|
derivative of 1-x
|
derivative\:1-x
|
integral of x^4
|
integral\:x^{4}
|
polar(4,4)
|
polar(4,4)
|
derivative of f(x)=ax^2+bx+c
|
derivative\:f(x)=ax^{2}+bx+c
|
derivative of f(x)=7
|
derivative\:f(x)=7
|
midpoint(8,-10)(-10,-8)
|
midpoint(8,-10)(-10,-8)
|
tangent of f(x)=e^{-x}ln(x),\at x=1
|
tangent\:f(x)=e^{-x}\ln(x),\at\:x=1
|
slope of x=-2
|
slope\:x=-2
|
derivative of f(x)=4x+7,\at x=5
|
derivative\:f(x)=4x+7,\at\:x=5
|
polar(2,2)
|
polar(2,2)
|
integral of tan(x)
|
integral\:\tan(x)
|
derivative of f(x)=ln(x^2)
|
derivative\:f(x)=\ln(x^{2})
|
slope of x=-5
|
slope\:x=-5
|
derivative of x^2e^{3x}
|
derivative\:x^{2}e^{3x}
|
derivative of f(x)=x+2
|
derivative\:f(x)=x+2
|
integral of sqrt(x)
|
integral\:\sqrt{x}
|
derivative of f(x)=3x+8,\at x=4
|
derivative\:f(x)=3x+8,\at\:x=4
|
slope of(8,4)(20,10)
|
slope(8,4)(20,10)
|
slope of y=2x+3
|
slope\:y=2x+3
|
tangent of x^2+y^2+2xy=4,\at(1,1)
|
tangent\:x^{2}+y^{2}+2xy=4,\at(1,1)
|
slope of y=-3/4 x+11
|
slope\:y=-\frac{3}{4}x+11
|
f(1)=5
|
f(1)=5
|
derivative of f(x)=cos(2x)
|
derivative\:f(x)=\cos(2x)
|
distance(0,10)(-9,1)
|
distance(0,10)(-9,1)
|
derivative of f(x)=x^2+x-5
|
derivative\:f(x)=x^{2}+x-5
|
polar(5,5)
|
polar(5,5)
|
polar y=x^2-x+7
|
polar\:y=x^{2}-x+7
|
x=9
|
x=9
|
slope ofintercept 2x+y=6
|
slopeintercept\:2x+y=6
|
derivative of f(x)=sqrt(1-x^2)
|
derivative\:f(x)=\sqrt{1-x^{2}}
|
derivative of x^3sec(x)+sec(x)tan(x)x^4
|
derivative\:x^{3}\sec(x)+\sec(x)\tan(x)x^{4}
|
midpoint(-9,4)(2,-1)
|
midpoint(-9,4)(2,-1)
|
midpoint(8,-3)(-5,-9)
|
midpoint(8,-3)(-5,-9)
|
tangent of x^2,\at(3,9)
|
tangent\:x^{2},\at(3,9)
|
derivative of 6x
|
derivative\:6x
|
slope of 8x-6y=1
|
slope\:8x-6y=1
|
slope of y=2
|
slope\:y=2
|
derivative of f(x)=sec(x)
|
derivative\:f(x)=\sec(x)
|
derivative of 9x
|
derivative\:9x
|
derivative of f(x)=10x^5
|
derivative\:f(x)=10x^{5}
|
midpoint(a,b+3)(a-4,3b)
|
midpoint(a,b+3)(a-4,3b)
|
midpoint(13,8)(-6,-6)
|
midpoint(13,8)(-6,-6)
|
derivative of 5e^x
|
derivative\:5e^{x}
|
slope of 4x-y+12=0
|
slope\:4x-y+12=0
|
tangent of f(x)=tan(2x),\at x=0
|
tangent\:f(x)=\tan(2x),\at\:x=0
|
derivative of f(x)=x^5-2x^3+x
|
derivative\:f(x)=x^{5}-2x^{3}+x
|
derivative of y=sqrt(2-x^2)
|
derivative\:y=\sqrt{2-x^{2}}
|
integral of x^2
|
integral\:x^{2}
|
tangent of 3x^2-4
|
tangent\:3x^{2}-4
|
tangent of y=x^2
|
tangent\:y=x^{2}
|
derivative of y=5
|
derivative\:y=5
|
polar(5sqrt(3),5)
|
polar(5\sqrt{3},5)
|
derivative of f(x)=e^{3x}
|
derivative\:f(x)=e^{3x}
|
derivative of f(x)=x^2+2
|
derivative\:f(x)=x^{2}+2
|
tangent of y=1+1/x
|
tangent\:y=1+\frac{1}{x}
|
derivative of y=xsqrt(1-x^2)
|
derivative\:y=x\sqrt{1-x^{2}}
|
derivative of xln(x)-x
|
derivative\:x\ln(x)-x
|
midpoint(-3,-8)(-6.5,-4.5)
|
midpoint(-3,-8)(-6.5,-4.5)
|
f(0)=1
|
f(0)=1
|
derivative of x+1
|
derivative\:x+1
|
distance(0,0)(6,3)
|
distance(0,0)(6,3)
|
polar(-2sqrt(2),2sqrt(2))
|
polar(-2\sqrt{2},2\sqrt{2})
|
derivative of y=2x^2(3x-4)
|
derivative\:y=2x^{2}(3x-4)
|
cartesian(-1, pi/3)
|
cartesian(-1,\frac{π}{3})
|
derivative of f(x)=sin(x)^{x^3},\at x=
|
derivative\:f(x)=\sin(x)^{x^{3}},\at\:x=
|
derivative of y=5^x
|
derivative\:y=5^{x}
|
midpoint(-36,0)(6,1)
|
midpoint(-36,0)(6,1)
|
slope of-3
|
slope\:-3
|
derivative of f(x)=(sqrt(x))/2
|
derivative\:f(x)=\frac{\sqrt{x}}{2}
|
derivative of y=1
|
derivative\:y=1
|
f(2)=0
|
f(2)=0
|
x=-2/3
|
x=-\frac{2}{3}
|
midpoint(-1,-2)(3,6)
|
midpoint(-1,-2)(3,6)
|
derivative of f(x)=x^2-2/x+3*sin(2x)
|
derivative\:f(x)=x^{2}-\frac{2}{x}+3\cdot\:\sin(2x)
|
midpoint(0,0)(2,6)
|
midpoint(0,0)(2,6)
|
derivative of f(x)= 3/(x^4)
|
derivative\:f(x)=\frac{3}{x^{4}}
|
derivative of y=x^{(7/3)}
|
derivative\:y=x^{(\frac{7}{3})}
|
tangent of x^2+3x-5,\at x=1
|
tangent\:x^{2}+3x-5,\at\:x=1
|
midpoint(-8,-6)(-4,10)
|
midpoint(-8,-6)(-4,10)
|
slope of y=7x
|
slope\:y=7x
|
derivative of x+1/x
|
derivative\:x+\frac{1}{x}
|
polar y=5x^2
|
polar\:y=5x^{2}
|
derivative of f(x)=e^{-x+2},\at x=4
|
derivative\:f(x)=e^{-x+2},\at\:x=4
|
slope of y=2x+4
|
slope\:y=2x+4
|
midpoint(0,0)(8,6)
|
midpoint(0,0)(8,6)
|
derivative of y=sec^2(x)
|
derivative\:y=\sec^{2}(x)
|
derivative of 3x
|
derivative\:3x
|
slope ofintercept(-6,5)(-3,-3)
|
slopeintercept(-6,5)(-3,-3)
|
derivative of f(x)=(3x-x^3+1)^4
|
derivative\:f(x)=(3x-x^{3}+1)^{4}
|
derivative of f(x)=sqrt(x^3)
|
derivative\:f(x)=\sqrt{x^{3}}
|
integral of e^{-x^2}
|
integral\:e^{-x^{2}}
|