f(x)=2x^2-2x+2
|
f(x)=2x^{2}-2x+2
|
f(1)=2x-1
|
f(1)=2x-1
|
g(e)=ln(x-1)+e^{x^2-3}+(x^2-4)^{5/3}
|
g(e)=\ln(x-1)+e^{x^{2}-3}+(x^{2}-4)^{\frac{5}{3}}
|
12-2x,x>2
|
12-2x,x>2
|
f(x)=5x^2+x-3
|
f(x)=5x^{2}+x-3
|
p(x)=x^2-9
|
p(x)=x^{2}-9
|
y=3x-19
|
y=3x-19
|
y=3x-13
|
y=3x-13
|
f(x)=-2sec^2(x)tan(x)
|
f(x)=-2\sec^{2}(x)\tan(x)
|
parity f(x)=x^4+3x^2-2
|
parity\:f(x)=x^{4}+3x^{2}-2
|
S(n)=(2n-3n^2)+10
|
S(n)=(2n-3n^{2})+10
|
y=3x^2+30x+65
|
y=3x^{2}+30x+65
|
f(x)=log_{2}(x-3)-1
|
f(x)=\log_{2}(x-3)-1
|
f(x)=5^{2(-1)}
|
f(x)=5^{2(-1)}
|
f(x)=2(2)^x
|
f(x)=2(2)^{x}
|
f(x)=(sqrt(x+2))/x
|
f(x)=\frac{\sqrt{x+2}}{x}
|
f(y)=3y-2
|
f(y)=3y-2
|
f(x)=x^2+6x-78
|
f(x)=x^{2}+6x-78
|
f(x)= x/(x^2+x+4)
|
f(x)=\frac{x}{x^{2}+x+4}
|
y=sin^3(2x)
|
y=\sin^{3}(2x)
|
domain of I^{22}
|
domain\:I^{22}
|
y=-x^2+4x+6
|
y=-x^{2}+4x+6
|
f(x)=-2x^2+4x-9
|
f(x)=-2x^{2}+4x-9
|
f(x)=sqrt(x^3-x)
|
f(x)=\sqrt{x^{3}-x}
|
f(x)=2x+25
|
f(x)=2x+25
|
f(o)=sec(o)
|
f(o)=\sec(o)
|
y=2x^2+x
|
y=2x^{2}+x
|
f(x)=x^4cos(x)
|
f(x)=x^{4}\cos(x)
|
f(x)=6sin^2(2x+pi/8)+5
|
f(x)=6\sin^{2}(2x+\frac{π}{8})+5
|
f(x)=2x^2-5x-6
|
f(x)=2x^{2}-5x-6
|
f(x)=sqrt(x^2-3x-10)
|
f(x)=\sqrt{x^{2}-3x-10}
|
midpoint (1,2)(-3,5)
|
midpoint\:(1,2)(-3,5)
|
f(θ)=5+2cos(3θ)
|
f(θ)=5+2\cos(3θ)
|
f(x)=-2x^2+3x+2
|
f(x)=-2x^{2}+3x+2
|
f(x)=2cos(x)+sin(x)
|
f(x)=2\cos(x)+\sin(x)
|
f(x)=20x+3
|
f(x)=20x+3
|
f(x)=(x+3)/(x^2+4)
|
f(x)=\frac{x+3}{x^{2}+4}
|
f(x)=x^2-3x+12
|
f(x)=x^{2}-3x+12
|
sin(arcsin(x))
|
\sin(\arcsin(x))
|
f(x)=x^{1/3}(x-4)
|
f(x)=x^{\frac{1}{3}}(x-4)
|
r(x)=3sin(x)
|
r(x)=3\sin(x)
|
y=sqrt(49-x^2)
|
y=\sqrt{49-x^{2}}
|
slope intercept of 2
|
slope\:intercept\:2
|
f(x)=x^2+9x
|
f(x)=x^{2}+9x
|
Y(x)=-2x+4
|
Y(x)=-2x+4
|
f(x)=2x^2-4x+8
|
f(x)=2x^{2}-4x+8
|
f(x)=-3x^2+75
|
f(x)=-3x^{2}+75
|
f(x)=sqrt((24-2x-x^2)/(x^2-4))
|
f(x)=\sqrt{\frac{24-2x-x^{2}}{x^{2}-4}}
|
f(x)=1-1/(x^2)
|
f(x)=1-\frac{1}{x^{2}}
|
f(x)=9x^2-4x+3
|
f(x)=9x^{2}-4x+3
|
y=-1/4 x+8
|
y=-\frac{1}{4}x+8
|
y=-1/4 x-6
|
y=-\frac{1}{4}x-6
|
f(x)=x^3+3x+8
|
f(x)=x^{3}+3x+8
|
line (0,3)(-3,0)
|
line\:(0,3)(-3,0)
|
y=(x-1)^2-5
|
y=(x-1)^{2}-5
|
y=-x^2+6x-2
|
y=-x^{2}+6x-2
|
y=-x^2+6x+4
|
y=-x^{2}+6x+4
|
f(x)=2x^2-8x+2
|
f(x)=2x^{2}-8x+2
|
f(x)=((5x+5))/5
|
f(x)=\frac{(5x+5)}{5}
|
y=x^4(5x-4x^2)
|
y=x^{4}(5x-4x^{2})
|
f(x)=-2x^2+6x+1
|
f(x)=-2x^{2}+6x+1
|
f(x)=5sec(x)
|
f(x)=5\sec(x)
|
y=(x+8)^3+9
|
y=(x+8)^{3}+9
|
f(x)=cot^2(x)-tan^2(x)
|
f(x)=\cot^{2}(x)-\tan^{2}(x)
|
inverse of 2^x
|
inverse\:2^{x}
|
y=x^2+5x-7
|
y=x^{2}+5x-7
|
y=-x^2+2x+10
|
y=-x^{2}+2x+10
|
f(x)= 1/(x-2)+3
|
f(x)=\frac{1}{x-2}+3
|
y=(1+4x^3)(1+2x^2)
|
y=(1+4x^{3})(1+2x^{2})
|
f(x)=-2(x-1)^2+5
|
f(x)=-2(x-1)^{2}+5
|
f(x)= 1/8 x^8-x^4
|
f(x)=\frac{1}{8}x^{8}-x^{4}
|
f(x)=x^4-3x^2+2x
|
f(x)=x^{4}-3x^{2}+2x
|
y=(4x^2-16)/(x-2)
|
y=\frac{4x^{2}-16}{x-2}
|
f(x)=x^3+2x+2
|
f(x)=x^{3}+2x+2
|
f(m)=4m^2-9
|
f(m)=4m^{2}-9
|
inverse of \sqrt[5]{x}
|
inverse\:\sqrt[5]{x}
|
f(x)=2x^2-7x+2
|
f(x)=2x^{2}-7x+2
|
f(x)=2x^2-7x-5
|
f(x)=2x^{2}-7x-5
|
f(x)=-sin(x)-cos^2(x)
|
f(x)=-\sin(x)-\cos^{2}(x)
|
y=x^3-3/2 x^2
|
y=x^{3}-\frac{3}{2}x^{2}
|
y=2.3^x
|
y=2.3^{x}
|
f(j)=3+4j
|
f(j)=3+4j
|
f(x)=(5x^2)/(2x^2+3x)
|
f(x)=\frac{5x^{2}}{2x^{2}+3x}
|
f(x)=tan(x+pi/3)
|
f(x)=\tan(x+\frac{π}{3})
|
y=(-1)/(x-5)-1
|
y=\frac{-1}{x-5}-1
|
f(x)=2(1/3)^x-6
|
f(x)=2(\frac{1}{3})^{x}-6
|
range of x+7
|
range\:x+7
|
y=(|1+x|^{3/2})/(sqrt(x))
|
y=\frac{\left|1+x\right|^{\frac{3}{2}}}{\sqrt{x}}
|
g(x)=(x+1)^2
|
g(x)=(x+1)^{2}
|
f(x)=3x^2+10x+6
|
f(x)=3x^{2}+10x+6
|
f(x)=3x^2+10x-3
|
f(x)=3x^{2}+10x-3
|
f(x)=(4x+8)/(x^2+2x)
|
f(x)=\frac{4x+8}{x^{2}+2x}
|
f(x)=(-3x-9)/(x^2-9)
|
f(x)=\frac{-3x-9}{x^{2}-9}
|
f(x)=e^{-|x|}
|
f(x)=e^{-\left|x\right|}
|
f(x)=-|x+4|+2
|
f(x)=-\left|x+4\right|+2
|
y=(x-2)(x+5)
|
y=(x-2)(x+5)
|
y=ln(x)-1
|
y=\ln(x)-1
|
inflection points of f(x)=x^3-3x^2
|
inflection\:points\:f(x)=x^{3}-3x^{2}
|
asymptotes of f(x)=6x^3+9x^2-12x-1
|
asymptotes\:f(x)=6x^{3}+9x^{2}-12x-1
|
y=ln(x)-3
|
y=\ln(x)-3
|