f(x)=5cot(8x)+3
|
f(x)=5\cot(8x)+3
|
y=-16x^2+235x+133
|
y=-16x^{2}+235x+133
|
domain of x^2-18x+73
|
domain\:x^{2}-18x+73
|
y=4x^2-x^3
|
y=4x^{2}-x^{3}
|
y=x(ln(x))
|
y=x(\ln(x))
|
k(x)=3x^2+24x+36
|
k(x)=3x^{2}+24x+36
|
f(b)=log_{b}(18)
|
f(b)=\log_{b}(18)
|
f(x)=-log_{5}(x+2)
|
f(x)=-\log_{5}(x+2)
|
f(x)=(1+sin(x)+cos(x))/(1-sin(x)+cos(x))
|
f(x)=\frac{1+\sin(x)+\cos(x)}{1-\sin(x)+\cos(x)}
|
f(x)=3+log_{3}(x)
|
f(x)=3+\log_{3}(x)
|
f(16)= 1/3 (4-x)^2
|
f(16)=\frac{1}{3}(4-x)^{2}
|
f(x)=-1/3 x^3
|
f(x)=-\frac{1}{3}x^{3}
|
f(t)=sin(5t)cos(2t)
|
f(t)=\sin(5t)\cos(2t)
|
slope intercept of x+y=0
|
slope\:intercept\:x+y=0
|
f(x)=log_{5}(x)+log_{25}(x)
|
f(x)=\log_{5}(x)+\log_{25}(x)
|
f(x)=x^4-4x^2+2
|
f(x)=x^{4}-4x^{2}+2
|
f(x)=4x^2+x-2
|
f(x)=4x^{2}+x-2
|
f(x)=7sin(2x-pi/3)
|
f(x)=7\sin(2x-\frac{π}{3})
|
g(x)=(cos(x))/(1-sin(x))
|
g(x)=\frac{\cos(x)}{1-\sin(x)}
|
f(x)=sqrt(-x^2-8x+20)-1
|
f(x)=\sqrt{-x^{2}-8x+20}-1
|
g(x)=(2x+3)/(x-5)
|
g(x)=\frac{2x+3}{x-5}
|
f(j)=3j
|
f(j)=3j
|
f(x)=(0.2)^x
|
f(x)=(0.2)^{x}
|
y=cot(x/2)
|
y=\cot(\frac{x}{2})
|
inverse of f(x)=x^{1/3}-92
|
inverse\:f(x)=x^{\frac{1}{3}}-92
|
f(x)=-4+x
|
f(x)=-4+x
|
f(x)=(7x+5)/(7x)
|
f(x)=\frac{7x+5}{7x}
|
f(x)= 4/(x-8)
|
f(x)=\frac{4}{x-8}
|
y=(1-cos(x))/(1+x^3)
|
y=\frac{1-\cos(x)}{1+x^{3}}
|
f(θ)=(sin(θ)+tan(θ))/(1+sec(θ))
|
f(θ)=\frac{\sin(θ)+\tan(θ)}{1+\sec(θ)}
|
f(x)=(2sin(2x))/x
|
f(x)=\frac{2\sin(2x)}{x}
|
y=ce^{-x}
|
y=ce^{-x}
|
y=(x^3)/(2(x+1)^2)
|
y=\frac{x^{3}}{2(x+1)^{2}}
|
y=x^3-27
|
y=x^{3}-27
|
f(x)= 1/(2sin(x))
|
f(x)=\frac{1}{2\sin(x)}
|
domain of ln(1+x^2)
|
domain\:\ln(1+x^{2})
|
f(x)=1+sqrt(2+3x)
|
f(x)=1+\sqrt{2+3x}
|
f(x)=2x^3-4x^2-2x+4
|
f(x)=2x^{3}-4x^{2}-2x+4
|
h(t)=-15t^2+60t+315
|
h(t)=-15t^{2}+60t+315
|
f(x)=e^{x+6}
|
f(x)=e^{x+6}
|
f(x)=6x^2+5x+4
|
f(x)=6x^{2}+5x+4
|
y=(ln(x))/(x^5)
|
y=\frac{\ln(x)}{x^{5}}
|
f(x)=7x^3-39x^2-40x+132
|
f(x)=7x^{3}-39x^{2}-40x+132
|
f(x)=2x^2-6
|
f(x)=2x^{2}-6
|
f(x)=-3*2^{-x+2}+1
|
f(x)=-3\cdot\:2^{-x+2}+1
|
1,0<t<2
|
1,0<t<2
|
intercepts of f(x)=-1/2 x^2+4x-7
|
intercepts\:f(x)=-\frac{1}{2}x^{2}+4x-7
|
f(x)=2cos(2x)+2sin(x)
|
f(x)=2\cos(2x)+2\sin(x)
|
y=sec(x-6)
|
y=\sec(x-6)
|
f(y)=(ln(y))^2-10ln(y)+16
|
f(y)=(\ln(y))^{2}-10\ln(y)+16
|
f(x)=1-2x^3
|
f(x)=1-2x^{3}
|
f(t)=arcsin(sin(t))
|
f(t)=\arcsin(\sin(t))
|
f(a)=9a
|
f(a)=9a
|
y=sqrt(x+2)-4
|
y=\sqrt{x+2}-4
|
f(x)=sqrt(sec(x))
|
f(x)=\sqrt{\sec(x)}
|
y=2x^2+32x+136
|
y=2x^{2}+32x+136
|
h(x)=|x-3|+2x
|
h(x)=\left|x-3\right|+2x
|
extreme points of f(x)=x^3-6x^2+5
|
extreme\:points\:f(x)=x^{3}-6x^{2}+5
|
line (4,5)(8,7)
|
line\:(4,5)(8,7)
|
f(x)=(1/2)^{3x+2}-3
|
f(x)=(\frac{1}{2})^{3x+2}-3
|
g(x)=1.6*x+1.2
|
g(x)=1.6\cdot\:x+1.2
|
f(x)=3125x^{3/5}
|
f(x)=3125x^{\frac{3}{5}}
|
y=-9x^2+571x-3884
|
y=-9x^{2}+571x-3884
|
f(x)=\sqrt[3]{x+4}-5
|
f(x)=\sqrt[3]{x+4}-5
|
f(x)=sqrt((x-2))-6
|
f(x)=\sqrt{(x-2)}-6
|
f(x)=log_{10}(x+5)-4
|
f(x)=\log_{10}(x+5)-4
|
y=4^{x+2}
|
y=4^{x+2}
|
y=-7^x
|
y=-7^{x}
|
f(x)=2x^3-7
|
f(x)=2x^{3}-7
|
inverse of f(x)=6
|
inverse\:f(x)=6
|
f(x)=27x^2
|
f(x)=27x^{2}
|
f(r)= r/2
|
f(r)=\frac{r}{2}
|
g(x)=sqrt(1-x)
|
g(x)=\sqrt{1-x}
|
f(x)=sqrt(|x|-2)
|
f(x)=\sqrt{\left|x\right|-2}
|
f(x)=\sqrt[3]{(x+1)/(x-1)}
|
f(x)=\sqrt[3]{\frac{x+1}{x-1}}
|
f(x)=7x^{1/3}
|
f(x)=7x^{\frac{1}{3}}
|
f(x)=-2x^2+5x^3-6x+10
|
f(x)=-2x^{2}+5x^{3}-6x+10
|
f(x)=(x+4)^{2/3}
|
f(x)=(x+4)^{\frac{2}{3}}
|
f(x)=sqrt(-x^2)
|
f(x)=\sqrt{-x^{2}}
|
f(x)=5xln(x)
|
f(x)=5x\ln(x)
|
y=-30x^2+1325x-8569
|
y=-30x^{2}+1325x-8569
|
f(x)=(e^{-2x})/x
|
f(x)=\frac{e^{-2x}}{x}
|
f(x)=sin(9x^2)
|
f(x)=\sin(9x^{2})
|
y=2x^2+5x+1
|
y=2x^{2}+5x+1
|
y=2x^2+5x+3
|
y=2x^{2}+5x+3
|
g(x)=sqrt(16-x^2)
|
g(x)=\sqrt{16-x^{2}}
|
f(x)= x/(1+x^3)
|
f(x)=\frac{x}{1+x^{3}}
|
f(x)=-x^3+2x^2+3
|
f(x)=-x^{3}+2x^{2}+3
|
y= x/(x^2-16)
|
y=\frac{x}{x^{2}-16}
|
g(x)=sqrt(x-4)
|
g(x)=\sqrt{x-4}
|
distance (5,-4)(5,7)
|
distance\:(5,-4)(5,7)
|
f(x)=sqrt((9-x^2))
|
f(x)=\sqrt{(9-x^{2})}
|
g(x)=-x^3-2x^2+x+2
|
g(x)=-x^{3}-2x^{2}+x+2
|
f(x)=sqrt(x-4)-1
|
f(x)=\sqrt{x-4}-1
|
f(x)=x^3+5x^2+7x+3
|
f(x)=x^{3}+5x^{2}+7x+3
|
f(x)=[(x^2-3x+1)(3x^2+5x-5)]
|
f(x)=[(x^{2}-3x+1)(3x^{2}+5x-5)]
|
f(x)=cot^2(x)+csc(x)-19
|
f(x)=\cot^{2}(x)+\csc(x)-19
|
f(x)=log_{2}(3x+5)
|
f(x)=\log_{2}(3x+5)
|
f(x)=(1+x)^x
|
f(x)=(1+x)^{x}
|
f(x)=x^2sin(1/(x^2))
|
f(x)=x^{2}\sin(\frac{1}{x^{2}})
|